T-79.503 Fundamentals of Cryptology Homework 6 October 22, 2003

- 1. (Stinson 5.4) Compute gcd(57, 93), and find integers s and t such that 57s + 93t = gcd(57, 93).
- 2. (Stinson 5.7) Solve the following system of congruences:

 $13x \equiv 4 \mod 99$ $15x \equiv 56 \mod 101$

HINT First use the EXTENDED EUCLIDEAN ALGORITHM, and then apply the Chinese remainder theorem.

- 3. a) Compute $\phi(100)$.
 - b) Determine the two least significant decimal digits of the integer 2003^{2003} .
- 4. Find the cyclic multiplicative subgroups of \mathbb{Z}_{23} .
- 5. Consider the finite field $GF(2^3)$ with polynomial $x^3 + x + 1$ (see Stinson 6.4). Create the look-up table for the inversion function $z \mapsto z^{-1}$ in $GF(2^3)$.
- 6. Let f be the Boolean function defined by the leftmost output bit of the S-box S_1 of DES.
 - a) Create a look-up table for f considered as a function of the four middle input bits by setting $x_1 = x_6 = 1$.
 - b) Derive the algebraic normal form of f.
 - c) Count the number of inputs $(1, x_2, x_3, x_4, x_5, 1)$, for which $f(1, x_2, x_3, x_4, x_5, 1) = x_3$ and determine the correlation between the third (from the left) input bit and the leftmost output bit on the 4th row of S_1 .