T-79.503 Fundamentals of Cryptology
Homework 6
October 22, 2003

1. (Stinson 5.4) Compute gcd $(57,93)$, and find integers s and t such that $57 s+93 t=$ $\operatorname{gcd}(57,93)$.
2. (Stinson 5.7) Solve the following system of congruences:

$$
\begin{aligned}
13 x & \equiv 4 \bmod 99 \\
15 x & \equiv 56 \bmod 101
\end{aligned}
$$

HINT First use the EXTENDED EUCLIDEAN ALGORITHM, and then apply the Chinese remainder theorem.
3. a) Compute $\phi(100)$.
b) Determine the two least significant decimal digits of the integer 2003^{2003}.
4. Find the cyclic multiplicative subgroups of \mathbb{Z}_{23}.
5. Consider the finite field $\operatorname{GF}\left(2^{3}\right)$ with polynomial $x^{3}+x+1$ (see Stinson 6.4). Create the look-up table for the inversion function $z \mapsto z^{-1}$ in $G F\left(2^{3}\right)$.
6. Let f be the Boolean function defined by the leftmost output bit of the S-box S_{1} of DES.
a) Create a look-up table for f considered as a function of the four middle input bits by setting $x_{1}=x_{6}=1$.
b) Derive the algebraic normal form of f.
c) Count the number of inputs $\left(1, x_{2}, x_{3}, x_{4}, x_{5}, 1\right)$, for which $f\left(1, x_{2}, x_{3}, x_{4}, x_{5}, 1\right)=$ x_{3} and determine the correlation between the third (from the left) input bit and the leftmost output bit on the 4 th row of S_{1}.

