T-79.503 Foundations of Cryptology

Homework 5
October 15, 2003

1. Given a positive integer r and a combiner function $f: \mathbb{Z}_{26} \times \mathbb{Z}_{26} \rightarrow \mathbb{Z}_{26}$ we define a kind of Feistel cipher as follows:

$$
\begin{aligned}
L_{i} & =R_{i-1}, \\
R_{i} & =\left(L_{i-1}+f\left(R_{i-1}, K_{i}\right)\right) \bmod 26,
\end{aligned}
$$

where $K_{i} \in \mathbb{Z}_{26}$, and $i=1,2, \ldots, r$, and $L_{j}, R_{j} \in \mathbb{Z}_{26}, j=0,1,2, \ldots, r$. The plaintext is $\left(L_{0}, R_{0}\right)$ and the ciphertext is $\left(L_{r}, R_{r}\right)$.
Consider a case where $r=3$ and the combiner function f is defined as $f(X, K)=$ $(X \times K) \bmod 26$. The plaintext is $(2,11)$ and the ciphertext is $(8,1)$. Apply the meet-in-the-middle solution to find the keys K_{1} and K_{3}. (Create tables as depicted in the figure, and find K_{1} and K_{3} such that $D\left(K_{1}\right)=D\left(K_{3}\right)$.

Figure 1: Meet-in-the-Middle solution
2. (cf. Stinson Exercise 3.3) Consider a Feistel cipher, where the i th round is defined as follows:

$$
\begin{aligned}
L_{i} & =R_{i-1} \\
R_{i} & =L_{i-1} \oplus F_{i}\left(R_{i-1} \oplus K_{i}\right),
\end{aligned}
$$

where K_{i} is the round key and F_{i} is the round function. Given a bit sequence A we denote by $c(A)$ the bit sequence obtained by complementing the bits of A, for example, if $A=001$, then $c(A)=110$. Let $Y=\left(L_{r}, R_{r}\right)$ be the ciphertext obtained by encrypting the plaintext $X=\left(L_{0}, R_{0}\right)$ (= concatenation of L_{0} and $\left.R_{0}\right)$ using the r-round Feistel cipher with round keys $K_{1}, K_{2}, \ldots, K_{r}$. Show that then the plaintext $c(X)$ encrypted using the round keys $c\left(K_{1}\right), c\left(K_{2}\right), \ldots, c\left(K_{r}\right)$ gives the ciphertext $c(Y)$.
3. (Stinson 3.11 a)) The DES S-box S_{4} has some unusual properties:

7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14

Prove that the second row of S_{4} can be obtained from the first row by means of the following mapping:

$$
\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \mapsto\left(y_{2}, y_{1}, y_{4}, y_{3}\right) \oplus(0,1,1,0)
$$

4. Consider the S_{4}. Let us set $a=101110$. Which values the difference $S_{4}(x \oplus a) \oplus S_{4}(x)$ takes as x varies through the sixteen values $x=\left(1, x_{2}, x_{3}, x_{4}, x_{5}, 1\right)$?
5. (Stinson 3.7) Suppose a sequence of plaintext blocks, $x_{1}, x_{2}, \ldots, x_{n}$ yields the ciphertext sequence $y_{1}, y_{2}, \ldots, y_{n}$. Suppose that one ciphertext block, say y_{i}, is transmitted incorrectly (i.e., some 1's are changed to 0 's and vice versa). Show that the number of plaintex blocks that will be decrypted incorrectly is equal to 1 if ECB or OFB modes are used for encryption; and equal to two if CBC or CFB modes are used.
