T-79.503 Foundations of Cryptology Homework 4 October 8, 2003

1. A PIN code for a smart card is a number of four decimal digits (p_1, p_2, p_3, p_4) , where each p_i , i = 1, 2, 3, 4, is derived from a uniformly distributed random string of 16 bits $(r_1, r_2, ..., r_{16})$ by computing

 $p_i = (r_{4i-3} + r_{4i-2} \cdot 2 + r_{4i-1} \cdot 2^2 + r_{4i} \cdot 2^3) \mod 10.$

Determine the entropy of the PIN code. Compare it with the maximum entropy of a string of four decimal digits.

- 2. (Stinson 2.12) Prove that, in any cryptosystem, $H(\mathbf{P}|\mathbf{C}) \leq H(\mathbf{K}|\mathbf{C})$. (Intuitively, this result says that, given a ciphertext, the opponent's uncertainty about the key is at least as great as his uncertainty about the plaintext)
- 3. (Stinson 2.13) Let us consider a cryptosystem where $\mathcal{P} = \{a, b, c\}$ and $\mathcal{C} = \{1, 2, 3, 4\}$, $\mathcal{K} = \{K_1, K_2, K_3\}$, and the encryption mappings e_K are defined as follows:

K	$e_K(a)$	$e_K(b)$	$e_K(c)$
K_1	1	2	3
K_2	2	3	4
K_3	3	4	1

Given that keys are chosen equiprobably, and the plaintext probability distribution is $\mathbf{Pr}[a] = 1/2$, $\mathbf{Pr}[b] = 1/3$, $\mathbf{Pr}[c] = 1/6$, compute $H(\mathbf{P})$, $H(\mathbf{C})$, $H(\mathbf{K})$, $H(\mathbf{K}|\mathbf{C})$ and $H(\mathbf{P}|\mathbf{C})$,

- 4. The cryptosystem uses a 128-bit key. The language to be encrypted is a sequence of independent four-bit blocks with either exactly one 1-bit or exactly one 0-bit in each block. Every such block has equal probability.
 - a) The language is encrypted as such. Determine the unicity distance.
 - b) Design some coding for this language that completely removes the redundancy.
- 5. (Carbage in between) Consider a cryptosystem where $|\mathcal{P}| = |\mathcal{C}|$ and keys are chosen equiprobably. This cryptosystem is used to encrypt language L, which consists of strings of plaintext characters and has entropy H_L , redundancy R_L and unicity distance n_0 . The language L is modified in such a way that after each block of d characters s plaintext letters are chosen uniformly random from \mathcal{P} and inserted to the plaintext. What is the entropy, redundancy and the unicity distance of the modified language?