T-79.503 Fundamentals of Cryptology
Additional material (Handout 3)
for lectures October 15-22, 2003

1 Euler Phi-Function

In section 1.1.3 of the text-book, Definition 1.3, the Euler phi-function is defined as follows.
Definition 1.3 (Stinson) Suppose $a \geq 1$ and $m \geq 2$ are integers. If $\operatorname{gcd}(a, m)=1$ then we say that a and m are relatively prime. The number of integers in \mathbb{Z}_{m} that are relatively prime to m is denoted by $\phi(m)$.
We set $\phi(1)=1$. The function

$$
m \mapsto \phi(m), m \geq 1
$$

is called the Euler phi-function, or Euler totient function. Clearly, for m prime, we have $\phi(m)=m-1$. Further, we state the following fact without proof, and leave the proof as an easy exercise.
Fact. If m is a prime power, say, $m=p^{e}$, where p is prime and $p>1$, then $\phi(m)=$ $m\left(1-\frac{1}{p}\right)=p^{e}-p^{e-1}$.
The main purpose of this section is to prove the multiplicative property of the Euler phi-function.
Proposition. Suppose that $m \geq 1$ and $n \geq 1$ are integers such that $\operatorname{gcd}(m, n)=1$. Then $\phi(m \times n)=\phi(m) \times \phi(n)$.
Proof. If $m=1$ or $n=1$, then the claim holds. Suppose now that $m>1$ and $n>1$, and denote:

$$
\begin{aligned}
& A=\{a \mid 1 \leq a<m, \operatorname{gcd}(a, m)=1\} \\
& B=\{b \mid 1 \leq b<n, \operatorname{gcd}(b, n)=1\} \\
& C=\{c \mid 1 \leq c<m \times n, \operatorname{gcd}(c, m \times n)=1\}
\end{aligned}
$$

Then we have that $|A|=\phi(m),|B|=\phi(n)$, and $|C|=\phi(m \times n)$. We show that C has equally many elements as the set $A \times B=\{(a, b) \mid a \in A, b \in B\}$, from which the claim follows.
Since $\operatorname{gcd}(m, n)=1$, we can use the Chinese Remainder Theorem, by which the mapping

$$
\pi: \mathbb{Z}_{m n} \rightarrow \mathbb{Z}_{m} \times \mathbb{Z}_{n}, \pi(x)=(x \bmod m, x \bmod n)
$$

is bijective. Now we observe that $A \subset \mathbb{Z}_{m}, B \subset \mathbb{Z}_{n}$, and $C \subset \mathbb{Z}_{m \times n}$. Moreover, it holds that $x \in C$ if and only if $\pi(x) \in A \times B$, which we see by writing the following chain of equivalences:

$$
\begin{aligned}
\operatorname{gcd}(x, m \times n)=1 & \Leftrightarrow \operatorname{gcd}(x, m)=1 \text { and } \operatorname{gcd}(x, n)=1 \\
& \Leftrightarrow \operatorname{gcd}(x \bmod m, m)=1 \text { and } \operatorname{gcd}(x \bmod n, n)=1
\end{aligned}
$$

As a corollary, we get Theorem 1.2 of the textbook.
Theorem 1.2 Suppose

$$
m=\prod_{i=1}^{k} p_{i}^{e_{i}},
$$

where the integers p_{i} are distinct primes and $e_{i}>0,1 \leq i \leq k$. Then

$$
\phi(m)=\prod_{i=1}^{k}\left(p_{i}^{e_{i}}-p_{i}^{e_{i}-1}\right) .
$$

2 Algebraic Normal Form of a Boolean function

Let us now consider a function $f: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}$. Such a function is called a Boolean function of n variables. A Boolean function of n variables x_{1}, \ldots, x_{n} has a unique representation in its algebraic normal form

$$
\begin{aligned}
g\left(x_{1}, \ldots, x_{n}\right)= & a_{0} \oplus a_{1} x_{1} \oplus \cdots \oplus a_{n} x_{n} \oplus a_{12} x_{1} x_{2} \oplus \cdots \\
& \cdots \oplus a_{(n-1) n} x_{n-1} x_{n} \oplus a_{123} x_{1} x_{2} x_{3} \oplus \cdots \oplus a_{12 \ldots n} x_{1} x_{2} \cdots x_{n} .
\end{aligned}
$$

with coefficients $a_{i_{1}, \ldots, i_{k}} \in \mathbb{Z}_{2}$.
Given the values of the function f, its algebraic normal form $\operatorname{ANF}(f)$ can be derived using the following algorithm:

ANF Algorithm.

1. Set $g\left(x_{1}, \ldots, x_{n}\right)=f(0,0, \ldots .0)$

2 . For $k=1$ to $2^{n}-1$, do
3. use the binary representation of the integer k,

$$
k=b_{1}+b_{2} 2+b_{3} 2^{2}+\cdots+b_{n} 2^{n-1}
$$

4. if $g\left(b_{1}, b_{2}, \ldots, b_{n}\right) \neq f\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ then

$$
\text { set } g\left(x_{1}, \ldots, x_{n}\right)=g\left(x_{1}, \ldots, x_{n}\right) \oplus \prod_{i=1}^{n}\left(x_{i}\right)^{b_{i}}
$$

5. $\operatorname{ANF}(f)=g\left(x_{1}, \ldots, x_{n}\right)$

Example 4.

k	b_{3}	b_{2}	b_{1}	$f\left(b_{1}, b_{2}, b_{3}\right)$	$g\left(b_{1}, b_{2}, b_{3}\right)$
	0	0	0	0	0
1	0	0	1	0	0
2	0	1	0	1	x_{2}
3	0	1	1	0	$x_{2} \oplus x_{1} x_{2}$
4	1	0	0	1	$x_{2} \oplus x_{1} x_{2} \oplus x_{3}$
5	1	0	1	1	$x_{2} \oplus x_{1} x_{2} \oplus x_{3}$
6	1	1	0	0	$x_{2} \oplus x_{1} x_{2} \oplus x_{3}$
7	1	1	1	1	$x_{2} \oplus x_{1} x_{2} \oplus x_{3}$

Now the values of f given in the third column of the table can also be calculated from the expression $f\left(x_{1}, x_{2}, x_{3}\right)=x_{2} \oplus x_{3} \oplus x_{1} x_{2}$.

3 Non-linearity of Boolean Functions

3.1 Correlations

Let $x=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}_{2}^{m}$. The Hamming weight of x is defined as

$$
H_{W}(x)=\left|\left\{i \in\{1,2, \ldots, m\} \mid x_{i}=1\right\}\right| .
$$

For two vectors $x=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}_{2}^{m}$ and $y=\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{Z}_{2}^{m}$ the Hamming distance is defined as

$$
d_{H}(x, y)=H_{W}(x \oplus y)=\left|\left\{i \in\{1,2, \ldots, m\} \mid x_{i} \neq y_{i}\right\}\right| .
$$

Given two Boolean functions $f: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}$ and $g: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}$ the Hamming weight of f is defined as

$$
H_{W}(f)=\left|\left\{x \in \mathbb{Z}_{2}^{n} \mid f(x)=1\right\}\right|,
$$

and the Hamming distance between f and g is

$$
d_{H}(f, g)=\left|\left\{x \in \mathbb{Z}_{2}^{n} \mid f(x) \neq g(x)\right\}\right| .
$$

A Boolean function $f: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}$ is balanced if $H_{W}(f)=2^{n-1}$, which happens if and only if

$$
\left|\left\{x \in \mathbb{Z}_{2}^{n} \mid f(x)=1\right\}\right|=\left|\left\{x \in \mathbb{Z}_{2}^{n} \mid f(x)=0\right\}\right| .
$$

Example 5. Let $f_{00}: \mathbb{Z}_{2}^{4} \rightarrow \mathbb{Z}_{2}$ be the Boolean function defined as the first outputbit of the s-box S_{1} of the DES, when the first and the last (sixth) input bits are set equal to zero. Then f_{00} has the following values

$$
f_{00}=(1,0,1,0,0,1,1,1,0,1,0,1,0,1,0,0)
$$

arranged in the lexicographical order with respect to the input ($x_{2}, x_{3}, x_{4}, x_{5}$). Clearly, f_{00} is balanced, that is, $H_{W}\left(f_{00}\right)=8$. Further we see that

$$
d_{H}\left(f_{00}, s_{5}\right)=6, \text { and } d_{H}\left(f_{00}, s_{2}\right)=10
$$

where we have denoted by s_{i} the i th input bit to S_{1} as a Boolean function of the four middle input bits. That is, $s_{i}\left(x_{2}, x_{3}, x_{4}, x_{5}\right)=x_{i}$, for $i=2,3,4,5$.
Let $f: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}$ and $g: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}$ be two Boolean functions. The correlation between f and g is defined as

$$
\begin{aligned}
c(f, g) & =2^{-n}\left(\left|\left\{x \in \mathbb{Z}_{2}^{n} \mid f(x)=g(x)\right\}\right|-\left|\left\{x \in \mathbb{Z}_{2}^{n} \mid f(x) \neq g(x)\right\}\right|\right) \\
& =2^{-n}\left(2^{n}-2\left|\left\{x \in \mathbb{Z}_{2}^{n} \mid f(x) \neq g(x)\right\}\right|\right)=1-2^{1-n} d_{H}(f, g) .
\end{aligned}
$$

A Boolean function $f: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}$ is linear if it has an ANF of the form

$$
f(x)=a \cdot x=a_{1} x_{1} \oplus a_{2} x_{2} \oplus \cdots \oplus a_{n} x_{n}
$$

for some $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{Z}_{2}^{n}$. Then f is just a linear combination of its input bits. In such a case we denote $f=L_{a}$. A Boolean function is affine if it has an ANF of the form $f(x)=a \cdot x \oplus 1$.

Nonlinearity of a Boolean function $f: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}$ is defined as its minimum distance from the set consisting all affine and linear Boolean functions

$$
\mathcal{N}(f)=\min _{L} \text { linear }\left\{\min \left\{d_{H}(f, L), d_{H}(f, L \oplus 1)\right\}\right\} .
$$

Example 5(continued)

From $d_{H}\left(f_{00}, s_{5}\right)=6$ and $d_{H}\left(f_{00}, s_{2}\right)=10$, it follows that the nonlinearity of f is at most 6. Further we see that

$$
\begin{aligned}
& c\left(f_{00}, s_{5}\right)=1-\frac{1}{8} \cdot 6=\frac{1}{4}, \text { and } \\
& c\left(f_{00}, s_{2}\right)=1-\frac{10}{8}=-\frac{1}{4} .
\end{aligned}
$$

