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A binary linear feedback shift register (LFSR) is the following device

c0       c1      c2      c3         . . .            cm-1

z0       z1      z2      z3         . . . zm-1

where the i th tap constant ci = 1, if the switch connected, and ci = 0 if 
it is open. The contents of the register z0 , z1 , z2 , z3 , . . . , zm-1 are binary 
values. Given this state of the device the output is z0 and the new 
contents are z1, z2 , z3 , . . . ,zm-1, zm , where zm is computed using the 
recursion equation

zm = c0 z0 + c1 z1 + c2 z2 + c3 z3 +. . .+ cm-1 zm-1

The sum is computed modulo 2. As this process is iterated, the LFSR  
outputs a binary sequence z0 , z1 , z2 , z3 , . . . , zm-1, zm , . . .  Then the terms 
of this sequence satisfy the linear recursion relation
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zk+m = c0 zk + c1z k+1 + c2 zk+2 + c 3zk+3 +. . .+ cm-1 zk+m-1

for all k = 0,1,2,…

Examples 1.

a) zi = 0, i = 0,1,2,…   shortest LFSR:                    (no contents, length = 0)

b) zi = 1, i = 0,1,2,…   shortest LFSR:                 1            (length m = 1)

c) sequence 010101… ; shortest LFSR:              0    1        (length m = 2)

z0 = 0, z1 = 1, z k+2 = zk , k = 0,1,2,…

d) sequence 000000100000010…  LFSR:            0   0   0  0   0   0  1



3 LFSRs.PPT/ September 2003/ KN 

LFSR 3/12
The polynomial over Z2

f(x) =c0 + c1 x + c2 x2 + c3 x3 +. . .+ cm-1 xm-1 + xm

is called the connection polynomial of the LFSR with taps c0 c1 c2 . . . cm-1.
Given f(x) =c0 + c1x + . . .+ cm-1x m-1 + x m  we denote by f*(x) the reciprocal 
polynomial of f , defined as follows: 

f*(x) = xm f(x-1) = c0 xm + c1 x m-1 + c2 xm-2 + . . .+ cm-1 x + 1.

It has the following properties:
1. deg f*(x) ≤ deg f(x) , and deg f*(x) = deg f(x) if and only if c0 = 1.
2. Let h(x) = f(x)g(x). Then h*(x) = f*(x)g*(x). 

The set of sequences generated by the LFSR with connection polynomial
f(x) is denoted by Ω(f);
Ω(f) ={S = (zi )|zi∈ Z2; zk+m = c0zk + c1zk+1+ . . .+ cm-1zk+m-1, k = 0,1,…}.
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Ω(f) is a linear space over Z2 of dimension m. Its elements S can also be

expressed using the formal power series notation:

S = S(x) = z0 + z1 x + z2 x2 + z3 x3 +. . . = ∑i =0...∞ zi xi

Theorem 1. If S(x) ∈ Ω(f), then there is a polynomial P(x) of degree less 

than m (= deg f(x)) such that  S(x) = P(x)/f*(x).

Proof.    f*(x) = ∑i =0...m cm-i xi  =∑i =0...∞ c'i xi ,  where cm = 1, and c'i = cm-i , 

if 0 ≤ i ≤m, and c'i = 0 otherwise. Then

S(x)f*(x) = (∑i =0...∞ zi xi )(∑i =0...∞ c'i xi  ) = ∑i =0...∞ (∑t=0…i zi -t c't ) xi .

For i≥ m, denote r = i - m, and consider the i th term in the sum above: 

∑t=0…i zi -t c't = ∑t=0…m zi -t c't = ∑t=0…m zr+m -t cm-t = ∑k=0…m zr+k ck = 0, if

S(x) ∈ Ω(f). Then S(x)f*(x) = ∑i =0…m-1 (∑t=0…i zi -t c't ) xi  = P(x). 
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Corollary 1.  Ω(f) = { S(x) = P(x)/f*(x) | deg P(x) < deg f(x) }.

Proof.  Both sets are linear spaces over Z2 of the same dimension        
(deg f(x)). By Thm 1, Ω(f) is contained in the space on the right hand 
side. Therefore, the spaces are equal. 

Theorem 2. Let h(x) = lcm (f(x), g(x)), and let S1(x)∈Ω(f) and S2(x)∈Ω(g). 

Then S1(x)+S2(x) ∈ Ω(h).

Proof. h(x) = f(x)q1(x) = g(x)q2(x), where deg q1(x) = deg h(x) - deg f(x) 
and deg q2(x) = deg h(x) - deg g(x). Then by Thm 1:

S1(x) + S2(x) = (P1(x)/f*(x)) + (P2 (x)/g*(x)) = (P1(x)q1*(x) + P2 (x)q2*(x))/h*(x) 

where   deg(P1(x)q1*(x) + P2 (x)q2*(x)) ≤

max{deg P1(x)+deg q1*(x), deg P2 (x)+ deg q2*(x)} < deg h(x ).

The claim follows using Corollary 1. 
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Corollary 2. If f(x) divides h(x), then Ω(f) ⊂ Ω(h).

Example 2.  f(x) = x3 + x + 1 ;  g(x) = x2 + 1;                                         
h(x) = lcm (f(x),g(x)) = x5 + x2 + x + 1.

All sequences generated by the LFSR combination on the left hand side

can be generated  using a single LFSR of length 5: 
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Further, if f-LFSR is initialized with 011, g-LFSR with 00, and the  h-LFSR with 01110, 
then these two LFSRs generate the same sequence: 011100101110010… 

Indeed, take the five first bits of any sequence generated by the f register and use

them to  initialize the h register. Then the h register generates the same sequence.

f

g

h
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In the example above the LFSR with connection polynomial f(x) runs 

through  all seven possible non-zero states. 

The state space of the LFSR with polynomial h(x) splits into five separate

sets of states as follows:

1 + 1 + 2 + 7 + 7 + 14 = 32 = 25
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01110
11100
11001
10010
00101
01011
10111

11111 01010 
10101

10001 
00011 
00110 
01101 
11010 
10100 
01000

00001 
00010 
00100 
01001 
10011 
00111 
01111 
11110 
11101 
11011 
10110 
01100  
11000 
10000

00000
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FACT 1. For all binary polynomials f (x) there is a polynomial of the form

xe + 1, where e ≥ 1, such that f (x) divides xe + 1. The smallest of such non-

negative integers e is called the exponent of f(x). The exponent of f(x) is 

divides all other numbers with this property.

If S = (zi ) ∈ Ω(xe + 1), then clearly zi  = zi +e , for all i = 0,1,. . . Then it must

be that the period of the sequence  S = (zi )  divides e.     

We have the following theorem:

Theorem 3. If S = (zi ) ∈ Ω(f(x)), then the period of S divides the 

exponent of f(x). 

FACT 2. There exist polynomials f (x) for which all non-zero sequences in 

Ω(f) have  a period equal to the exponent of f (x). The polynomials with 

this property are exactly the irreducible polynomials.



9 LFSRs.PPT/ September 2003/ KN 

LFSR 9/12
FACT 3. For all positive integers m there exist polynomials of degree m
with exponent equal to 2m - 1 (the largest possible value). Such
polynomials are called primitive polynomials. Primitive polynomials are 
irreducible.
Corollary 3. Let f (x) be a primitive polynomial of degree m. Then all 
sequences generated by an LFSR with polynomial f (x) have period 2m - 1.  

Example 4. Binary polynomials of degree 4 with non-zero constant term :
exponent exponent

x4 + 1 = (x + 1)4 4 x4 + x2 + x + 1 = (x3 + x2 + 1)(x + 1) 7
x4 + x + 1 primitive 15 x4 + x3 + x + 1 = (x + 1)2(x2 + x + 1) 6
x4 + x2 + 1 = (x2 + x + 1)2    6 x4 + x3 + x2 + 1 = (x3 + x + 1)(x + 1)    7
x4 + x3 + 1 primitive 15 x4 + x3 + x2 + x + 1  irreducible 5
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LFSR 10/12 - Linear complexity

Let S (m) = z0,z1, z2 , z3 , . . . ,zm-1 be  a finite sequence of length m. We say

that the linear complexity  LC(S (m)) of S (m) is the length of the shortest

LFSR which generates the sequence  z0, z1, z2 , z3 , . . . ,zm-1.

Linear complexity does not decrease if new terms are added to the

sequence, but it may remain the same.

Examples 5.

a) S (m) = 000…01 (with m - 1 zeroes); LC(S (m)) = m.

b) S (m+1) = 111..10 (with m ones); LC(S (m+1)) = m.

c) By example 3, the linear complexity of 0111001011 is less than or 
equal to 3. From b) it follows that the linear complexity is exactly 3.
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Theorem 4. Let LC(S (m)) = L . Consider the LFSR of length L which 

generates the sequence S (m).  Then

a) The L subsequent states of the the LFSR are linearly independent.

b) The L + 1 subsequent states are linearly dependent.

c) If moreover, at least 2L  terms of the sequence are given, that is, m  ≥ 2L, 
then the connection polynomial of the generating LFSR is uniquely 
determined (cf. Stinson: Section 1.2.5).

Proof. Let the connection coefficients be c0 c1  c2  c3  . . .cL-1. Writing the 
recursion equation

zk+L = c0 zk + c1 zk+1 + c2 zk + 2 + . . .+ cL-1 zk + L-1

in vector form we get 

(c0  c1  c2  c3  . . .cL-1) Z = (zL zL + 1 zL + 2 zL + 3  . . . z2L-1)                         (*)
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where the rows (and columns) of the matrix Z are vectors

(zk zk + 1 zk + 2 zk + 3  . . . zk +L-1), for k = 0,1,…,L - 1.  Claim b) follows

immediately from this representation. Further, if L subsequent states

are linearly dependent, the sequence satisfies a linear recursion

relation of length (at most) L -1, and can be generated using a LFSR of 

length less than L . This gives a). 

Finally, if at least 2L terms of the sequence are given, then the vectors 

(zk zk + 1 zk + 2 zk + 3  . . . zk +L-1),  k = 0,1,…,L

that determine the columns of the matrix Z in equation (*) are known.

By a), the matrix Z is invertible. This gives a unique solution for the tap

constants (c0  c1  c2  c3  . . .cL-1). 


