Linear Feedliand Shift Registers 1/12

A binary linear feedlback shift register (LFSR) is the following device

where the $i^{\text {th }}$ tap constant $c_{i}=1$, if the switch connected, and $c_{i}=0$ if it is open. The contents of the register $z_{0}, z_{1}, z_{2}, z_{3}, \ldots, z_{m-1}$ are binary values. Given this state of the device the output is z_{0} and the new contents are $z_{1}, z_{2}, z_{3}, \ldots, z_{m-1}, z_{m}$, where z_{m} is computed using the recursion equation

$$
z_{m}=c_{0} z_{0}+c_{1} z_{1}+c_{2} z_{2}+c_{3} z_{3}+\ldots+c_{m-1} z_{m-1}
$$

The sum is computed modulo 2 . As this process is iterated, the UFSR outputs a binary sequence $z_{0}, z_{1}, z_{2}, z_{3}, \ldots, z_{m-1}, z_{m}, \ldots$ Then the terms of this sequence satisfy the linear recursion relation

LFSR 2/12

$$
z_{k+m}=c_{0} z_{k}+c_{1} z_{k+1}+c_{2} z_{k+2}+c_{3} z_{k+3}+\ldots+c_{m-1} z_{k+m-1}
$$

for all $k=0,1,2, \ldots$
Examples 1.
a) $z_{i}=0, i=0,1,2, \ldots$ shortest UFSR: \longleftarrow (no contents, length $=0$)
b) $z_{i}=1, i=0,1,2, \ldots$ shortest LFSR:
$\longleftarrow \boxed{1} \quad$ (length $\mathrm{m}=1$)
c) sequence $010101 .$. ; shortest IFSR:

$$
z_{0}=0, z_{1}=1, z_{k+2}=z_{k}, k=0,1,2, \ldots
$$

d) sequence $000000100000010 .$. . LFSR:

LFSR 3/12

The polynomial over \mathbf{Z}_{2}

$$
f(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots+c_{m-1} x^{m-1}+x^{m}
$$

is called the connection polynomial of the HFSR with taps $c_{0} c_{1} c_{2} \ldots c_{m-1}$. Given $f(x)=c_{0}+c_{1} x+\ldots+c_{m-1} x^{m-1}+x^{m}$ we denote by $f^{*}(x)$ the reciprocal polynomial of f, defined as follows:

$$
f^{*}(x)=x^{m} f\left(x^{1}\right)=c_{0} x^{m}+c_{1} x^{m-1}+c_{2} x^{m-2}+\ldots+c_{m-1} x+1 .
$$

It has the following properties:

1. $\operatorname{deg} f^{*}(x) \leq \operatorname{deg} f(x)$, and deg $f^{*}(x)=\operatorname{deg} f(x)$ if and only if $c_{0}=1$.
2. Let $h(x)=f(x) g(x)$. Then $h^{*}(x)=f^{*}(x) g^{*}(x)$.

The set of sequences generated by the LFSR with connection polynomial $f(x)$ is denoted by $\Omega(f)$;

$$
\Omega(f)=\left\{S=\left(z_{i}\right) \mid z_{i} \in Z_{2} ; z_{k+m}=c_{0} z_{k}+c_{1} z_{k+1}+\ldots+c_{m+1} z_{k+m-1}, k=0,1, \ldots\right\} .
$$

LFSR 4/12

$\Omega(f)$ is a linear space over Z_{2} of dimension m Its elements Scan also be expressed using the formal power series notation:

$$
S=S(x)=z_{0}+z_{1} x+z_{2} x^{2}+z_{3} x^{3}+\ldots=\sum_{i=0 \ldots \infty} z_{i} x^{i}
$$

Theorem 1. If $S(x) \in \Omega(f)$, then there is a polynomial $P(x)$ of degree less than $m(=\operatorname{deg} f(x))$ such that $S(x)=P(x) / f^{*}(x)$.

Proof. $f^{*}(x)=\sum_{i=0 \ldots m} c_{m-i} x^{i}=\sum_{i=0 \ldots \infty} c_{i}^{\prime} x^{i}$, where $c_{m}=1$, and $c_{i}^{\prime}=c_{m-i}$, if $\mathrm{O} \leq \mathrm{i} \leq \mathrm{m}$, and $\mathrm{c}_{\mathrm{i}}=\mathrm{O}$ otherwise. Then
$S(x) f^{*}(x)=\left(\sum_{i=0 . . \infty} z_{i} x^{i}\right)\left(\sum_{i=0 \ldots \infty} C_{i}^{\prime} x^{i}\right)=\sum_{i=0 . . . \infty}\left(\sum_{t=0 . . i} z_{i-t} c_{t}^{\prime}\right) x^{i}$.
For $\mathrm{i} \geq \mathrm{m}$ denote $\mathrm{r}=\mathrm{i}-\mathrm{m}$ and consider the $\mathrm{i}^{\text {th }}$ term in the sum above:
$\sum_{t=0 . . \mathrm{i}} \mathrm{z}_{\mathrm{i}-\mathrm{t}} \mathrm{c}_{\mathrm{t}}^{\prime}=\sum_{\mathrm{t}=0 . . \mathrm{m}} \mathrm{z}_{\mathrm{i}-\mathrm{t}} \mathrm{c}_{\mathrm{t}}^{\prime}=\sum_{\mathrm{t}=0 . . \mathrm{m}} \mathrm{z}_{\mathrm{r}+\mathrm{m}-\mathrm{t}} \mathrm{c}_{\mathrm{mt}}=\sum_{\mathrm{k}=0 . . \mathrm{m}} \mathrm{z}_{\mathrm{r}+\mathrm{k}} \mathrm{c}_{\mathrm{k}}=0$, if
$S(x) \in \Omega(f)$. Then $S(x) f^{*}(x)=\sum_{i=0 . . m-1}\left(\sum_{t=0 . . i} z_{i-t} C_{t}^{\prime}\right) x^{i}=P(x)$.

LFSR 5/12

Corollary 1. $\Omega(f)=\left\{S(x)=P(x) / f^{*}(x) \mid \operatorname{deg} P(x)<\operatorname{deg} f(x)\right\}$.
Proof. Both sets are linear spaces over \mathbf{Z}_{2} of the same dimension ($\operatorname{deg} f(x)$). By Thm 1, $\Omega(f)$ is contained in the space on the right hand side. Therefore, the spaces are equal.

Theorem 2. Let $h(x)=\operatorname{lcm}(f(x), g(x))$, and let $S_{1}(x) \in \Omega(f)$ and $S_{2}(x) \in \Omega(g)$.
Then $S_{1}(x)+S_{2}(x) \in \Omega(h)$.
Proof. $h(x)=f(x) q_{1}(x)=g(x) q_{2}(x)$, where deg $q_{1}(x)=\operatorname{deg} h(x)-\operatorname{deg} f(x)$ and deg $\mathrm{q}_{2}(x)=\operatorname{deg} h(x)-\operatorname{deg} g(x)$. Then by Thm 1 :
$S_{1}(x)+S_{2}(x)=\left(P_{1}(x) / f^{*}(x)\right)+\left(P_{2}(x) / g^{*}(x)\right)=\left(P_{1}(x) q_{1}^{*}(x)+P_{2}(x) q_{2}^{*}(x)\right) / h^{*}(x)$
where $\operatorname{deg}\left(P_{1}(x) q_{1}^{*}(x)+P_{2}(x) q_{2}^{*}(x)\right) \leq$
$\max \left\{\operatorname{deg} P_{1}(x)+\operatorname{deg} \mathrm{g}_{1}{ }^{*}(x)\right.$, deg $\left.\mathrm{P}_{2}(x)+\operatorname{deg} \mathrm{o}_{2}{ }^{*}(x)\right\}<\operatorname{deg} \mathrm{h}(x)$.
The claimfollows using Corollary 1.

LFSR 6/12

Corollary 2. If $f(x)$ divides $h(x)$, then $\Omega(f) \subset \Omega(h)$.
Example 2. $f(x)=x^{3}+x+1 ; g(x)=x^{2}+1$;

$$
h(x)=\operatorname{lcm}(f(x), g(x))=x^{5}+x^{2}+x+1
$$

All sequences generated by the LFSR combination on the left hand side can be generated using a single UFSR of length 5:

Further, if f-LFSR is initialized with 011, g - LFSR with 00, and the h-UFSR with 01110, then these two LFSRs generate the same sequence: 011100101110010...

Indeed, take the five first bits of any sequence generated by the f register and use them to initialize the h register. Then the h register generates the same sequence.

LFSR 7/12

In the example above the LFSR with connection polynomial $f(x)$ runs through all seven possible non-zero states.

The state space of the LFSR with polynomial $h(x)$ splits into five separate
sets of states as follows:

LFSR 8/12

FACT 1. For all binary polynomials $f(x)$ there is a polynomial of the form $x^{e}+1$, where $e \geq 1$, such that $f(x)$ divides $x^{e}+1$. The smallest of such nonnegative integers e is called the exponent of $f(x)$. The exponent of $f(x)$ is divides all other numbers with this property.
If $S=\left(z_{i}\right) \in \Omega\left(x^{e}+1\right)$, then clearly $z_{i}=z_{i+e}$, for all $i=0,1, \ldots$. Then it must be that the period of the sequence $S=\left(z_{i}\right)$ divides e.

We have the following theorem
Theorem 3. If $S=\left(z_{i}\right) \in \Omega(f(x))$, then the period of S divides the exponent of $f(x)$.

FACT2. There exist polynomials $f(x)$ for which all non-zero sequences in $\Omega(f)$ have a period equal to the exponent of $f(x)$. The polynomials with this property are exactly the irreducible polynomials.

LFSR 9/12

FACT 3. For all positive integers mthere exist polynomials of degree m with exponent equal to $2^{m}-1$ (the largest possible value). Such polynomials are called primitive polynomials. Primitive polynomials are irreducible.

Corollary 3. Let $f(x)$ be a primitive polynomial of degree m Then all sequences generated by an LFSR with polynomial $f(x)$ have period $2^{m}-1$.

Example 4. Binary polynomials of degree 4 with non-zero constant term:
exponent
exponent

$x^{4}+1=(x+1)^{4}$	4	$x^{4}+x^{2}+x+1=\left(x^{3}+x^{2}+1\right)(x+1)$	7
$x^{4}+x+1$	primitive	15	$x^{4}+x^{3}+x+1=(x+1)^{2}\left(x^{2}+x+1\right)$
$x^{4}+x^{2}+1=\left(x^{2}+x+1\right)^{2}$	6	6	
$x^{4}+x^{3}+1$	primitive	15	$x^{4}+x^{2}+1=\left(x^{3}+x+1\right)(x+1)$
		7	

LFSR 10/12 - Linear complexity

Let $S^{(m)}=z_{0}, z_{1}, z_{2}, z_{3}, \ldots, z_{m-1}$ be a finite sequence of length m We say that the linear complexity $L C\left(S^{(m)}\right)$ of $S^{(m)}$ is the length of the shortest LFSR which generates the sequence $z_{0}, z_{1}, z_{2}, z_{3}, \ldots, z_{m-1}$. Linear complexity does not decrease if new terms are added to the sequence, but it may remain the same.

Examples 5.

a) $S^{(m)}=000$. . 01 (with $m-1$ zeroes); $L C\left(S^{(m)}\right)=m$
b) $S^{(m+1)}=111 . .10$ (with mones); LC($\left(^{(m+1)}\right)=m$
c) By example 3, the linear complexity of 0111001011 is less than or equal to 3 . Fromb) it follows that the linear complexity is exactly 3.

LFSR 11/12 - Linear complexity

Theorem 4. Let LC(S $\left.{ }^{(m)}\right)=L$. Consider the LFSR of length L which generates the sequence $S^{(m)}$. Then
a) The Lsubsequent states of the the LFSR are linearly independent.
b) The L+1 subsequent states are linearly dependent.
c) If moreover, at least 2 L terms of the sequence are given, that is, $\mathrm{m} \geq 2 \mathrm{~L}$, then the connection polynomial of the generating UFSR is uniquely determined (cf. Stinson: Section 1.2.5).

Proof. Let the connection coefficients be $c_{0} c_{1} c_{2} c_{3} \ldots c_{\text {L-1 }}$. Writing the recursion equation

$$
z_{k+L}=c_{0} z_{k}+c_{1} z_{k+1}+C_{2} z_{k+2}+\ldots+c_{L-1} z_{k+L-1}
$$

in vector form we get

$$
\begin{equation*}
\left(c_{0} c_{1} c_{2} c_{3} \cdots c_{L-1}\right) Z=\left(z_{L} z_{L+1} z_{L+2} z_{L+3} \cdots z_{2 L-1}\right) \tag{*}
\end{equation*}
$$

LFSR 12/12 - Linear Complexity

where the rows (and columns) of the matrix Z are vectors $\left(z_{k} z_{k+1} z_{k+2} z_{k+3} \cdots z_{k+L-1}\right)$, for $k=0,1, . ., L-1$. Claimb) follows immediately from this representation. Further, if L subsequent states are linearly dependent, the sequence satisfies a linear recursion relation of length (at most) L-1, and can be generated using a LFSR of length less than L. This gives a).

Finally, if at least 2L terms of the sequence are given, then the vectors

$$
\left(z_{k} z_{k+1} z_{k+2} z_{k+3} \cdots z_{k+L-1}\right), k=0,1, \ldots, L
$$

that determine the columns of the matrix Z in equation (*) are known.
By a), the matrix Z is invertible. This gives a unique solution for the tap constants $\left(c_{0} c_{1} c_{2} c_{3} \ldots c_{L-1}\right)$.

