Linear Feedback Shift Registers 1/12

A binary linear feedback shift register (LFSR) is the following device

where the *i*th tap constant $c_i = 1$, if the switch connected, and $c_i = 0$ if it is open. The contents of the register z_0 , z_1 , z_2 , z_3 , ..., z_{m-1} are binary values. Given this state of the device the output is z_0 and the new contents are z_1 , z_2 , z_3 , ..., z_{m-1} , z_m , where z_m is computed using the recursion equation

$$Z_m = C_0 Z_0 + C_1 Z_1 + C_2 Z_2 + C_3 Z_3 + \ldots + C_{m-1} Z_{m-1}$$

The sum is computed *modulo* 2. As this process is iterated, the LFSR outputs a binary sequence z_0 , z_1 , z_2 , z_3 , ..., z_{m-1} , z_m , ... Then the terms of this sequence satisfy the linear recursion relation

LFSR 2/12

$$Z_{k+m} = C_0 Z_k + C_1 Z_{k+1} + C_2 Z_{k+2} + C_3 Z_{k+3} + \dots + C_{m-1} Z_{k+m-1}$$

for all $k = 0, 1, 2, \dots$
Examples 1.
a) $Z_i = 0, i = 0, 1, 2, \dots$ shortest LFSR:
(no contents, length = 0)
b) $Z_i = 1, i = 0, 1, 2, \dots$ shortest LFSR:
 $Z_0 = 0, Z_1 = 1, Z_{k+2} = Z_k, k = 0, 1, 2, \dots$
d) sequence 000000100000010... LFSR:

LFSR 3/12

The polynomial over Z₂

$$f(x) = C_0 + C_1 X + C_2 X^2 + C_3 X^3 + \ldots + C_{m-1} X^{m-1} + X^m$$

is called the connection polynomial of the LFSR with taps $c_0 c_1 c_2 \dots c_{m-1}$. Given $f(x) = c_0 + c_1 x + \dots + c_{m-1} x^{m-1} + x^m$ we denote by $f^*(x)$ the reciprocal polynomial of f, defined as follows:

$$f^{*}(x) = x^{m} f(x^{-1}) = C_{0} x^{m} + C_{1} x^{m-1} + C_{2} x^{m-2} + \ldots + C_{m-1} x + 1.$$

It has the following properties:

1. deg $f'(x) \le \deg f(x)$, and deg $f'(x) = \deg f(x)$ if and only if $c_0 = 1$. 2. Let h(x) = f(x)g(x). Then $h^*(x) = f^*(x)g^*(x)$. The set of sequences generated by the LFSR with connection polynomial

f(x) is denoted by $\Omega(f)$;

$$\Omega(f) = \{ S = (Z_i) | Z_i \in \mathbb{Z}_2; Z_{k+m} = C_0 Z_k + C_1 Z_{k+1} + \ldots + C_{m-1} Z_{k+m-1}, k = 0, 1, \ldots \}.$$

LFSR 4/12

 $\Omega(f)$ is a linear space over Z_2 of dimension *m*. Its elements *S* can also be expressed using the formal power series notation:

$$S = S(x) = Z_0 + Z_1 X + Z_2 X^2 + Z_3 X^3 + \ldots = \sum_{i=0...\infty} Z_i X^i$$

Theorem 1. If $S(x) \in \Omega(f)$, then there is a polynomial P(x) of degree less than $m (= \deg f(x))$ such that $S(x) = P(x)/f^*(x)$.

Proof. $f^*(x) = \sum_{i=0\dots m} c_{m-i} x^i = \sum_{i=0\dots \infty} c'_i x^i$, where $c_m = 1$, and $c'_i = c_{m-i}$, if $0 \le i \le m$, and $c'_i = 0$ otherwise. Then

$$S(x)f^{*}(x) = (\sum_{i=0...\infty} Z_{i}x^{i})(\sum_{i=0...\infty} C_{i}x^{i}) = \sum_{i=0...\infty} (\sum_{t=0...i} Z_{i-t}C_{t})x^{i}.$$

For $i \ge m$, denote r = i - m, and consider the *i*th term in the sum above:

$$\sum_{t=0...i} Z_{i-t} C'_{t} = \sum_{t=0...m} Z_{i-t} C'_{t} = \sum_{t=0...m} Z_{r+m-t} C_{m-t} = \sum_{k=0...m} Z_{r+k} C_{k} = 0, \text{ if } S(x) \in \Omega(f). \text{ Then } S(x) f^{*}(x) = \sum_{i=0...m-1} (\sum_{t=0...i} Z_{i-t} C'_{t}) x^{i} = P(x).$$

LFSR 5/12

Corollary 1. $\Omega(f) = \{ S(x) = P(x)/f^*(x) \mid \deg P(x) < \deg f(x) \}.$

Proof. Both sets are linear spaces over Z_2 of the same dimension (deg f(x)). By Thm 1, $\Omega(f)$ is contained in the space on the right hand side. Therefore, the spaces are equal.

Theorem 2. Let h(x) = lcm(f(x), g(x)), and let $S_1(x) \in \Omega(f)$ and $S_2(x) \in \Omega(g)$. Then $S_1(x) + S_2(x) \in \Omega(h)$.

Proof. $h(x) = f(x)q_1(x) = g(x)q_2(x)$, where deg $q_1(x) = \deg h(x) - \deg f(x)$ and deg $q_2(x) = \deg h(x) - \deg g(x)$. Then by Thm 1:

 $S_{1}(x) + S_{2}(x) = (P_{1}(x)/f^{*}(x)) + (P_{2}(x)/g^{*}(x)) = (P_{1}(x)q_{1}^{*}(x) + P_{2}(x)q_{2}^{*}(x))/h^{*}(x)$ where $\deg(P_{1}(x)q_{1}^{*}(x) + P_{2}(x)q_{2}^{*}(x)) \le$

 $\max\{\deg P_1(x) + \deg q_1^*(x), \deg P_2(x) + \deg q_2^*(x)\} < \deg h(x).$

The claim follows using Corollary 1.

LFSR 6/12

Corollary 2. If f(x) divides h(x), then $\Omega(f) \subset \Omega(h)$. <u>Example 2.</u> $f(x) = x^3 + x + 1$; $g(x) = x^2 + 1$; $h(x) = \text{lcm}(f(x),g(x)) = x^5 + x^2 + x + 1$.

All sequences generated by the LFSR combination on the left hand side can be generated using a single LFSR of length 5:

Further, if *f*-LFSR is initialized with 011, *g*-LFSR with 00, and the *h*-LFSR with 01110, then these two LFSRs generate the same sequence: 011100101110010...

Indeed, take the five first bits of any sequence generated by the *f* register and use them to initialize the *h* register. Then the *h* register generates the same sequence.

LFSR 7/12

In the example above the LFSR with connection polynomial f(x) runs

through all seven possible non-zero states.

The state space of the LFSR with polynomial h(x) splits into five separate sets of states as follows: 00001

LFSR 8/12

<u>FACT 1.</u> For all binary polynomials f(x) there is a polynomial of the form $x^e + 1$, where $e \ge 1$, such that f(x) divides $x^e + 1$. The smallest of such non-negative integers e is called the exponent of f(x). The exponent of f(x) is divides all other numbers with this property.

If $S = (z_i) \in \Omega(x^e + 1)$, then clearly $z_i = z_{i+e}$, for all i = 0, 1, ... Then it must be that the period of the sequence $S = (z_i)$ divides *e*.

We have the following theorem:

Theorem 3. If $S = (Z_i) \in \Omega(f(x))$, then the period of *S* divides the exponent of f(x).

<u>FACT 2.</u> There exist polynomials f(x) for which all non-zero sequences in $\Omega(f)$ have a period equal to the exponent of f(x). The polynomials with this property are exactly the irreducible polynomials.

LFSR 9/12

<u>FACT 3.</u> For all positive integers *m* there exist polynomials of degree *m* with exponent equal to $2^m - 1$ (the largest possible value). Such polynomials are called primitive polynomials. Primitive polynomials are irreducible.

Corollary 3. Let f(x) be a primitive polynomial of degree *m*. Then all sequences generated by an LFSR with polynomial f(x) have period $2^m - 1$. <u>Example 4.</u> Binary polynomials of degree 4 with non-zero constant term : exponent exponent

$x^4 + 1 = (x + 1)^4$	4	$x^{4} + x^{2} + x + 1 = (x^{3} + x^{2} + 1)(x + 1)$	7
$x^4 + x + 1$ primitive	15	$x^4 + x^3 + x + 1 = (x + 1)^2(x^2 + x + 1)$	6
$x^4 + x^2 + 1 = (x^2 + x + 1)^2$	6	$x^4 + x^3 + x^2 + 1 = (x^3 + x + 1)(x + 1)$	7
$x^4 + x^3 + 1$ primitive	15	$x^4 + x^3 + x^2 + x + 1$ irreducible	5

LFSR 10/12 - Linear complexity

Let $S^{(m)} = z_0, z_1, z_2, z_3, \ldots, z_{m-1}$ be a finite sequence of length *m*. We say that the linear complexity $LC(S^{(m)})$ of $S^{(m)}$ is the length of the shortest LFSR which generates the sequence $z_0, z_1, z_2, z_3, \ldots, z_{m-1}$. Linear complexity does not decrease if new terms are added to the sequence, but it may remain the same.

Examples 5.

- a) $S^{(m)} = 000...01$ (with m 1 zeroes); $LC(S^{(m)}) = m$.
- b) $S^{(m+1)} = 111..10$ (with mones); $LC(S^{(m+1)}) = m$.
- c) By example 3, the linear complexity of 0111001011 is less than or equal to 3. From b) it follows that the linear complexity is exactly 3.

LFSR 11/12 - Linear complexity

Theorem 4. Let $LC(S^{(m)}) = L$. Consider the LFSR of length L which

generates the sequence $S^{(m)}$. Then

- a) The *L* subsequent states of the the LFSR are linearly independent.
- b) The L + 1 subsequent states are linearly dependent.
- c) If moreover, at least 2*L* terms of the sequence are given, that is, $m \ge 2L$, then the connection polynomial of the generating LFSR is uniquely determined (cf. Stinson: Section 1.2.5).
- Proof. Let the connection coefficients be $c_0 c_1 c_2 c_3 \dots c_{L-1}$. Writing the recursion equation

$$Z_{k+L} = C_0 Z_k + C_1 Z_{k+1} + C_2 Z_{k+2} + \ldots + C_{L-1} Z_{k+L-1}$$

in vector form we get

$$(C_0 \ C_1 \ C_2 \ C_3 \ \dots \ C_{L-1}) \ \mathsf{Z} = (Z_L \ Z_{L+1} \ Z_{L+2} \ Z_{L+3} \ \dots \ Z_{2L-1}) \tag{*}$$

LFSR 12/12 - Linear Complexity

where the rows (and columns) of the matrix Z are vectors $(z_k \ z_{k+1} \ z_{k+2} \ z_{k+3} \ \dots \ z_{k+L-1})$, for $k = 0, 1, \dots, L - 1$. Claim b) follows immediately from this representation. Further, if L subsequent states are linearly dependent, the sequence satisfies a linear recursion relation of length (at most) L - 1, and can be generated using a LFSR of length less than L. This gives a).

Finally, if at least 2*L* terms of the sequence are given, then the vectors

$$(Z_k Z_{k+1} Z_{k+2} Z_{k+3} ... Z_{k+L-1}), k = 0, 1, ..., L$$

that determine the columns of the matrix Z in equation (*) are known. By a), the matrix Z is invertible. This gives a unique solution for the tap constants ($c_0 \ c_1 \ c_2 \ c_3 \ \dots \ c_{L-1}$).