T-79.4501
 Cryptography and Data Security

Lecture 8:

- Discrete Logarithm Problem
- Diffie-Hellman key agreement scheme
- ElGamal public key encryption

Stallings: Ch 5, 8, 10

Cyclic multiplicative group of finite field

Given a finite field \mathbf{F} with q elements and an element $g \in \mathbf{F}$ consider a subset in \mathbf{F} formed by the powers of g :

$$
\left\{g^{0}=1, g, g^{2}, g^{3}, \ldots\right\}
$$

Since \mathbf{F} is finite, this set must be finite. Hence there is a number r such that $g^{r}=1$. By Fermat's theorem, one such number is $q-1$. Let r be the smallest number with $g^{r}=1$. Then r divides $q-1$, and r is called the order of g. The set

$$
\left\{g, g^{2}, g^{3}, \ldots, g^{\mathrm{r}-1}, g^{\mathrm{r}}=1=g^{0}\right\}
$$

is called the cyclic group generated by g.
There are elements $\alpha \in \mathbf{F}$ such that $r=q-1$ and

$$
\left\{\alpha, \alpha^{2}, \alpha^{3}, \ldots, \alpha^{q-2}, \alpha^{q-1}=1\right\}=\mathbf{F}-\{0\}=\mathbf{F}^{\star}
$$

Such element α is called primitive element in \mathbf{F}.

Cyclic subgroups

\mathbf{F} finite field, $g \in \mathbf{F}^{*}$, let $\langle\mathrm{g}\rangle$ denote the set generated by g; $<g>=\left\{1=g^{0}, g^{1}, g^{2}, \ldots, g^{r-1}\right\}$, where r is the least positive number such that $\mathrm{gr}=1$ in \mathbf{F}. By Fermat's and Euler's theorems $\mathrm{r} \leq \# \mathbf{F}^{*}=$ number of elements in \mathbf{F}^{\star}.
r is the order of g.
< $g>$ is a subgroup of the multiplicative group F^{*} in F.
Axiom 1: $\mathrm{g}^{\mathrm{i}} \cdot \mathrm{g}^{j}=\mathrm{g}^{\mathrm{i}+j} \in<\mathrm{g}>$.
Axiom 2: associativity is inherited from F
Axiom 3: $1=g^{0} \in\langle g\rangle$.
Axiom 4: Given $\mathrm{g}^{\mathrm{i}} \in\langle\mathrm{g}\rangle$ the multiplicative inverse is $\mathrm{g}^{\mathrm{r-i}}$, as $g^{i} \cdot g^{r-i}=g^{r-i} \cdot g^{i}=g^{r}=1$
$<g>$ is called a cyclic group. The entire F^{*} is a cyclic group generated by a primitive element, e.g, $\mathrm{Z}_{19}{ }^{*}=<2>$.

Generated set of g

Example: Finite field \mathbf{Z}_{19}
$\mathrm{g}=7$
gi mod 19

The multiplicative order
of 7 is 3 in \mathbf{Z}_{19}.

i	g^{i}
0	1
1	7
2	$49=11$
3	$77=1$
4	7
5	11
\cdots	\cdots

Generated set of a primitive element

Example: Finite field \mathbf{Z}_{19}
$g=2$
$g^{i} \bmod 19, i=0,1,2, \ldots$

Element $g=2$ generates all nonzero elements in \mathbf{Z}_{19}. It is a primitive element.

i	g^{i}	i	g^{i}
0	1	10	17
1	2	11	15
2	4	12	11
3	8	13	3
4	16	14	6
5	13	15	12
6	7	16	5
7	14	17	10
8	9	18	1

Example: Cyclic group in Galois Field

$G F\left(2^{4}\right)$ with polynomial $f(x)=x^{4}+x+1$

$$
\begin{aligned}
& g=0011=x+1 \\
& g^{2}=x^{2}+1=0101 \\
& g^{3}=(x+1)\left(x^{2}+1\right)=x^{3}+x^{2}+x+1=1111 \\
& g^{4}=(x+1)\left(x^{3}+x^{2}+x+1\right)=x^{4}+1=x=0010 \\
& g^{5}=(x+1)\left(x^{4}+1\right)=x^{5}+x^{4}+x+1=x^{2}+x=0110 \\
& g^{6}=(x+1)\left(x^{2}+x\right)=x^{3}+x=1010 \\
& g^{7}=(x+1)\left(x^{3}+x\right)=x^{4}+x^{3}+x^{2}+x=x^{3}+x^{2}+1=1101 \\
& g^{8}=(x+1)\left(x^{3}+x^{2}+1\right)=x^{4}+x^{2}+x+1=x^{2}=0100 \\
& g^{9}=(x+1) x^{2}=x^{3}+x^{2}=1100 \\
& g^{10}=(x+1)\left(x^{3}+x^{2}\right)=x^{2}+x+1=0111 \\
& g^{11}=(x+1)\left(x^{2}+x+1\right)=x^{3}+1=1001 \\
& g^{12}=(x+1)\left(x^{3}+1\right)=x^{3}=1000 \\
& g^{13}=(x+1) x^{3}=x^{3}+x+1=1011 \\
& g^{14}=(x+1)\left(x^{3}+x+1\right)=x^{3}+x^{2}+x=1110 \\
& g^{15}=(x+1)\left(x^{3}+x^{2}+x\right)=1=0001
\end{aligned}
$$

Discrete logarithm

Given $\mathrm{a} \in<\mathrm{g}>=\left\{1, \mathrm{~g}^{1}, \mathrm{~g}^{2}, \ldots, \mathrm{~g}^{r-1}\right\}$, there is $\mathrm{x}, 0 \leq \mathrm{x}<\mathrm{r}$ such that $a=g^{\mathrm{x}}$. The exponent x is called the discrete logarithm of a to the base g .
Example: Solve the equation

$$
2^{x}=14 \bmod 19
$$

We find the solution using the table (slide 13): $x=7$. Without the precomputed table the discrete logarithm is often hard to solve. Cyclic groups, where the discrete logarithm problem is hard, are used in cryptography.

Security of Diffie-Hellman Key Exchange

- If the Discrete Logarithm Problem (DLP) is easy then DH KE is insecure
- Diffie-Hellman Problem (DHP):

Given $\mathrm{g}, \mathrm{g}^{\mathrm{a}}, \mathrm{g}^{\mathrm{b}}$, compute $\mathrm{g}^{\text {ab }}$.

- It seems that in groups where the DHP is easy, also the DL is easy. It is unknown if this holds in general.
- DH KE is secure against passive wiretapping.
- DH KE is insecure under the active man-in-the-middle attack: Man-in-the-Middle exchanges a secret key with Alice, and another with Bob, while Alice believes that she is talking confidentially to Bob, and Bob believes he is talking confidentially to Alice (see next slide).
- This problem is solved by authenticating the Diffie-Hellman key exchange messages.

Recall: The Principle of Public Key Cryptosystems

Encryption operation is public
Decryption is private
anybody

Alice's key for a public key cryptosystem is a pair:
($\mathrm{K}_{\text {pub }}, \mathrm{K}_{\text {priv }}$) where $\mathrm{K}_{\text {pub }}$ is public and $\mathrm{K}_{\text {priv }}$ is cannot be used by anybody else than Alice.

Setting up the ElGamal public key cryptosystem

- Alice selects a prime p and a primitive element g in $Z_{p}{ }^{*}$.
- Alice generates $a, 0<a<p-1$, and computes $g^{a} \bmod p=A$.
- Alice's public key: $K_{\mathrm{pub}}=(p, g, A)$
- Alice's private key: $K_{\text {priv }}=a$
- Encryption of message $m \in Z_{p}^{*}$: Bob generates a secret, unpredictable $k, 0<k<p-1$. The encrypted message is the pair $\left(g^{k} \bmod p,\left(A^{k} \cdot m\right) \bmod p\right)$.
- Decryption of the ciphertext: Alice computes $\left(g^{k}\right)^{a}=A^{k} \bmod p$, and the multiplicative inverse of $A^{k} \bmod p$. Then $m=\left(A^{k}\right)^{-1} \cdot\left(A^{k} \cdot m\right) \bmod p$.
Diffie-Hellman Key Exchange and ElGamal Cryptosystem can be generalised to any cyclic group, where the discrete logarithm problem is hard.

Standard "modulo p " groups and their generators can be found in:
[RFC3526] RFC 3526: More Modular Exponential Diffie-Hellman groups for Internet Key Exchange

Selecting parameters for a Discrete Log based cryptosystem

- $\quad p$ and g can be the same for many users, but need not be.
- If $p-1$ has many small factors, then the probability that a public key generates a small group is non-negligble. To avoid this, the prime p is generated to be a secure prime, or Sophie Germain prime. Then $p=2 q+1$, where q is a prime.
- In RFC3526 all primes p are Sophie Germain primes and the generator elements have prime order $q=1 / 2(p-1)$.

