

Prime Numbers

Definition: An integer p > 1 is a prime if and only if its only positive integer divisors are 1 and p.

Fact: Any integer a > 1 has a unique representation as a product of its prime divisors

$$a = \prod_{i=1}^{t} p_i^{e_i} = p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$$

where $p_1 < p_2 < ... < p_t$ and each e_i is a positive integer. Some first primes: 2,3,5,7,11,13,17,... For more primes, see: www.utm.edu/research/primes/

Example: Composite (non-prime) numbers and their factorisations: $18 = 2 \times 3^2$, $27 = 3^3$, $42 = 2 \times 3 \times 7$, $84773093 = 8887 \times 9539$

2

Exte	nded Eu gcd(595	iclidean A 5,408) = 17 =	Algorith = <i>u</i> ×595 +	m: Example v×408	9
i	q_i	r _i	<i>u</i> _i	v_i	
0	-	595	1	0	
1	-	408	0	1	
2	1	187	1	-1	
3	2	34	-2	3	
4	5	17	11	-16	
	I	Ι	Ι	I	4

Euler's Totient Function $\phi(n)$

Definition: Let n > 1 be integer. Then we set $\phi(n) = \#\{a \mid 0 < a < n, \gcd(a,n) = 1\},\$ that is, $\phi(n)$ is the number of positive integers less than nwhich are coprime with n. For prime $p, \phi(p) = p - 1$. We define $\phi(1) = 1$. For a prime power p^e , we have $\phi(p^e) = p^{e-1}(p - 1)$. Given $m, n, \gcd(m,n) = 1$, we have $\phi(m \times n) = \phi(m) \times \phi(n)$. Now Euler's totient function can be computed for any integer using its prime factorisation. Example: $\phi(18) = \phi(2 \times 3^2) = \phi(2) \times \phi(3^2) = (2 - 1) \times (3 - 1) 3^1 = 6$, that is, the number of invertible (coprime with 18) numbers modulo 18 is equal to 6. They are: 1, 5, 7, 11, 13, 17.

9

Euler's Theorem $Z_n^* = \{a \mid 0 < a < n, \gcd(a, n) = 1\}, \text{ and } \# Z_n^* = \phi(n)$ Euler's Theorem: For any integers *n* and *a* such that $a \neq 0$ and $\gcd(a, n) = 1$ the following holds: $a^{\phi(n)} \equiv 1(\mod n)$ Fermat's Theorem: For a prime *p* and any integer *a* such that $a \neq 0$ and *a* is not a multiple of *p* the following holds: $a^{p-1} \equiv 1(\mod p)$

10