T-79.4501
 Cryptography and Data Security

Lecture 6: Number Theory
-Prime numbers
-Chinese remainder theorem
-Euler's totient function
-Euler's theorem
Stallings: Ch 8

Prime Numbers

Definition: An integer $p>1$ is a prime if and only if its only positive integer divisors are 1 and p.
Fact: Any integer $a>1$ has a unique representation as a product of its prime divisors

$$
a=\prod_{i=1}^{t} p_{i}^{e_{i}}=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{t}^{e_{t}}
$$

where $p_{1}<p_{2}<\ldots<p_{\mathrm{t}}$ and each e_{i} is a positive integer.
Some first primes: $2,3,5,7,11,13,17, \ldots$ For more primes, see:

www.utm.edu/research/primes/

Example: Composite (non-prime) numbers and their factorisations:

$$
18=2 \times 3^{2}, 27=3^{3}, 42=2 \times 3 \times 7,84773093=8887 \times 9539
$$

Euclidean Algorithm

Given two positive integers and their representations as products of prime powers, it would be easy to extract from them the maximum set of common prime powers.

For example $\operatorname{gcd}(18,42)=\operatorname{gcd}\left(2 \times 3^{2}, 2 \times 3 \times 7\right)=2 \times 3=6$.
On the other hand, given just one (composite) integer, its factorization is hard to compute (in general).
Euclidean Algorithm is an efficient algorithm for finding the gcd of two integers. It is based on the following fact:
Let $a>b$. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}(a \bmod b, b)$.
Example: $\operatorname{gcd}(42,18)=\operatorname{gcd}(6,18)=6$.
Example: $\operatorname{gcd}(595,408)=\operatorname{gcd}(187,408)=\operatorname{gcd}(187,34)=\operatorname{gcd}(17,34)=17$.
Slowest case: Fibonacci sequence 1, 2, 3, 5, 8,13, 21, $\ldots, F_{n}=F_{n-1}+F_{n-2}$. For example it takes 5 iterations to compute $\operatorname{gcd}(21,13)$; in general it takes n-2 iterations to compute $\operatorname{gcd}\left(F_{n}, F_{n-1}\right)$

Extended Euclidean Algorithm: Example

$\operatorname{gcd}(595,408)=17=u \times 595+v \times 408$				
i	q_{i}	r_{i}	u_{i}	v_{i}
0	-	595	1	0
1	-	408	0	1
2	1	187	1	-1
3	2	34	-2	3
4	5	17	11	-16

Extended Euclidean Algorithm: Examples

$\operatorname{gcd}(595,408)=17=11 \times 595+(-16) \times 408$

$$
=-397 \times 595+579 \times 408
$$

We get

$$
\begin{array}{r}
11 \times 595=17(\bmod 408) \\
579 \times 408=17(\bmod 595)
\end{array}
$$

and

If $\operatorname{gcd}(a, b)=1$, this algorithm gives modular inverses.
Example: $557 \times 797=1(\bmod 1047)$ that is $557=797^{-1}(\bmod 1047)$
If $\operatorname{gcd}(a, b)=1$, the integers a and b are said to be coprime.

Chinese Remainder Theorem (two moduli)

Problem: Assume m_{1} and m_{2} are coprime. Given x_{1} and x_{2}, how to find $0 \leq x<m_{1} m_{2}$ such that

$$
\begin{aligned}
& x=x_{1} \bmod m_{1} \\
& x=x_{2} \bmod m_{2}
\end{aligned}
$$

Solution: Use the Extended Euclidean Algorithm to find u and v such that $u \times m_{1}+v \times m_{2}=1$. Then

$$
\begin{aligned}
x & =x \times u \times m_{1}+x \times v \times m_{2} \\
& =\left(x_{2}+r \times m_{2}\right) \times u \times m_{1}+\left(x_{1}+s \times m_{1}\right) \times v \times m_{2} .
\end{aligned}
$$

It follows that
$x=x \bmod \left(m_{1} \times m_{2}\right)=\left(x_{2} \times u \times m_{1}+x_{1} \times v \times m_{2}\right) \bmod \left(m_{1} \times m_{2}\right)$

Chinese Remainder Theorem (general case)

Theorem: Assume $m_{1}, m_{2}, \ldots, m_{t}$ are mutually coprime.
Denote $\mathrm{M}=\mathrm{m}_{1} \times \mathrm{m}_{2} \times \ldots \times \mathrm{m}_{\mathrm{t}}$. Given $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{t}}$ there exists a unique $\mathrm{x}, 0<\mathrm{x}<\mathrm{M}$, such that
$\mathrm{x}=\mathrm{x}_{1} \bmod \mathrm{~m}_{1}$
$\mathrm{x}=\mathrm{x}_{2} \bmod \mathrm{~m}_{2}$
$x=x_{t} \bmod m_{t}$
x can be computed as
$x=\left(x_{1} \times u_{1} \times M_{1}+x_{2} \times u_{2} \times M_{2}+\ldots+x_{t} \times u_{t} \times M_{t}\right) \bmod M$,
where $\mathrm{M}_{\mathrm{i}}=\left(\mathrm{m}_{1} \times \mathrm{m}_{2} \times \ldots \times \mathrm{m}_{\mathrm{t}}\right) / \mathrm{m}_{\mathrm{i}}$ and $\mathrm{u}_{\mathrm{i}}=\mathrm{M}_{\mathrm{i}}{ }^{-1}\left(\bmod \mathrm{~m}_{\mathrm{i}}\right)$

Chinese Remainder Theorem: Example

Let $m_{1}=7, m_{2}=11, m_{3}=13$. Then $M=1001$.
Problem: Compute $x, 0 \leq x \leq 1000$ such that
$x=5 \bmod 7$
$x=3 \bmod 11$
$x=10 \bmod 13$

Solution:

$M_{1}=m_{2} m_{3}=143 ; M_{2}=m_{1} m_{3}=91 ; M_{3}=m_{1} m_{2}=77$
$u_{1}=M_{1}^{-1} \bmod m_{1}=143^{-1} \bmod 7=3^{-1} \bmod 7=5$; similarly
$u_{2}=M_{2}^{-1} \bmod m_{2}=3^{-1} \bmod 11=4 ; u_{3}=(-1)^{-1} \bmod 13=-1$.
Then
$x=(5 \times 5 \times 143+3 \times 4 \times 91+10 \times(-1) \times 77) \bmod 1001=894$

Euler's Totient Function $\phi(n)$

Definition: Let $\mathrm{n}>1$ be integer. Then we set

$$
\phi(n)=\#\{a \mid 0<a<n, \operatorname{gcd}(a, n)=1\},
$$

that is, $\phi(n)$ is the number of positive integers less than n which are coprime with n.
For prime $p, \phi(p)=p-1$. We define $\phi(1)=1$.
For a prime power p^{e}, we have $\phi\left(p^{e}\right)=p^{e-1}(p-1)$.
Given $m, n, \operatorname{gcd}(m, n)=1$, we have $\phi(m \times n)=\phi(m) \times \phi(n)$.
Now Euler's totient function can be computed for any integer using its prime factorisation.
Example: $\phi(18)=\phi\left(2 \times 3^{2}\right)=\phi(2) \times \phi\left(3^{2}\right)=(2-1) \times(3-1) 3^{1}=6$, that is, the number of invertible (coprime with 18) numbers modulo 18 is equal to 6 . They are: $1,5,7,11,13,17$.

Euler's Theorem

$$
\mathrm{Z}_{n}^{*}=\{a \mid 0<a<n, \operatorname{gcd}(a, n)=1\}, \text { and } \# \mathrm{Z}_{\mathrm{n}}^{*}=\phi(n)
$$

Euler's Theorem: For any integers n and a such that $a \neq 0$ and $\operatorname{gcd}(a, n)=1$ the following holds:

$$
a^{\phi(n)} \equiv 1(\bmod n)
$$

Fermat's Theorem: For a prime p and any integer a such that $a \neq 0$ and a is not a multiple of p the following holds:

$$
a^{p-1} \equiv 1(\bmod p)
$$

