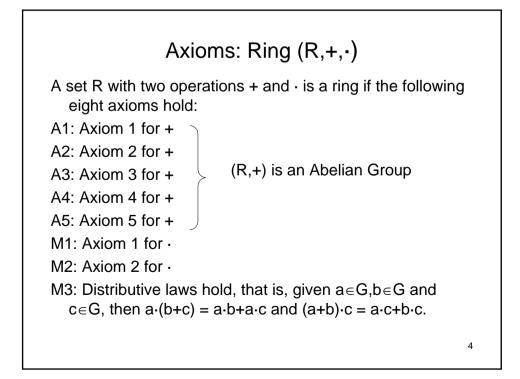


Axioms: Abelian Group

Axiom 5: Group (G,*) is Abelian group (or commutative group) if the operation * is commutative, that is, given $a \in G$ and $b \in G$, then a * b = b * a.



Axioms: Commutative Ring and Field

A ring $(R,+,\cdot)$ is commutative if M4: Axiom 5 for multiplication holds

A commutative ring $(F,+,\cdot)$ is a field if :

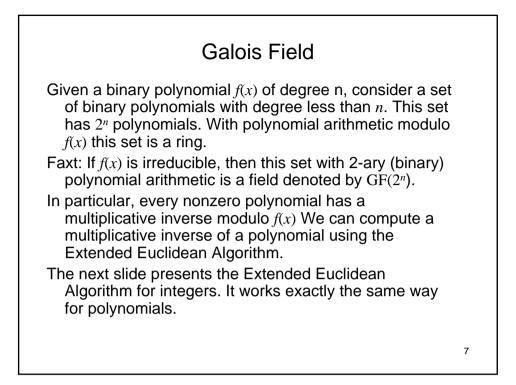
M5: Axiom 3 for \cdot in F-{0}, that is, a*1 = 1*a = a, for all $a \in F$, $a \neq 0$. M6: Axiom 4 for \cdot in F-{0}, that is, given $a \in F$, $a \neq 0$, there is a unique $a^{-1} \in F$ such that $a*a^{-1} = a^{-1}*a = 1$.

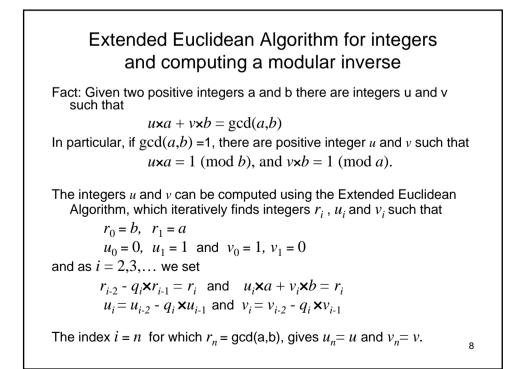
If $(F,+,\cdot)$ is a field, then $F^* = F-\{0\}$ with multiplication is a group.

Example: p prime, then $Z_p = \{a \mid 0 \le a < p\}$ with modulo p addition and multiplication is a field and (Z_p^*, \cdot) is a group.

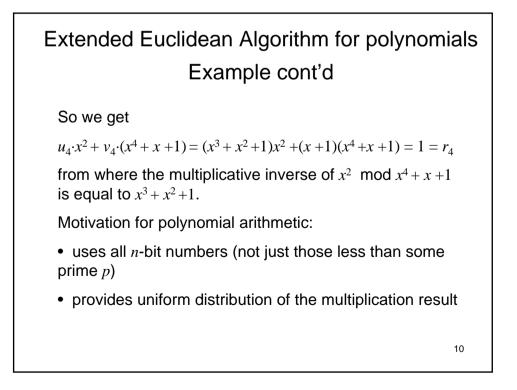
5

Polynomial Arithmetic• Modular arithmetic with polynomials • We limit to the case where polynomials have binary coefficients, that is, 1+1 = 0, and + is the same as -. **Example:** $(x^{2} + x + 1)(x^{3} + x + 1) = x^{5} + x^{2} + x^{4} + x^{2} + x + x^{3} + x + 1 = x^{5} + x = x \cdot (x^{4} + 1) = x \cdot x = x^{2} (mod(x^{4} + x + 1)))$ Computation mod(x⁴ + x + 1) means that everywhere we take x⁴ + x + 1 = 0, which means, for example, that x⁴ + 1 = x.





Exter	Extended Euclidean Algorithm for polynomials Example						
Examp	le: Comp	ute the mu	Iltiplicative inve	erse of x^2 modu	ulo x ⁴ +x	+1	
	i	q_i	r _i	<i>u</i> _i	v _i		
	0		$x^4 + x + 1$	0	1		
	1		<i>x</i> ²	1	0		
	2	<i>x</i> ²	<i>x</i> +1	<i>x</i> ²	1		
	3	x	x	x ³ +1	x		
	4	1	1	$x^3 + x^2 + 1$	<i>x</i> +1		
			1	1	1	9	



Example: Modulo 2^3 arithmetic compared to $GF(2^3)$ arithmetic (multiplication).

In GF(2^n) arithmetic, we identify polynomials of degree less than n:

$$a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$

with bit strings of length n: $(a_0, a_1, a_2, \dots, a_{n-1})$

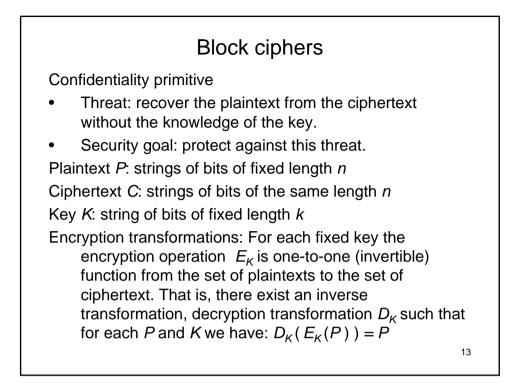
and further with integers less than 2^n :

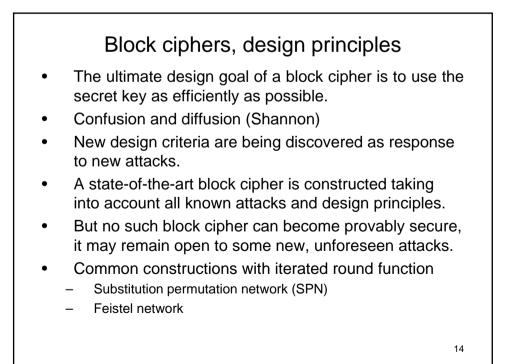
$$a_0 + a_1 2 + a_2 2^2 + \dots + a_{n-1} 2^{n-1}$$

Example: In GF(2³) arithmetic with polynomial $x^3 + x + 1$ (see next slide) we get:

 $4 \cdot 3 = (100) \cdot (011) = x^2 \cdot (x+1) = x^3 + x^2 = (x+1) + x^2 = x^2 + x + 1$ = (111) = 7

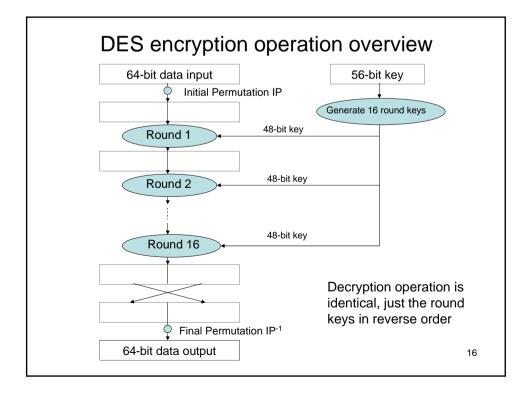
Multiplication tables modulo 8 arithmetic GF(2³) Polynomial arithmetic

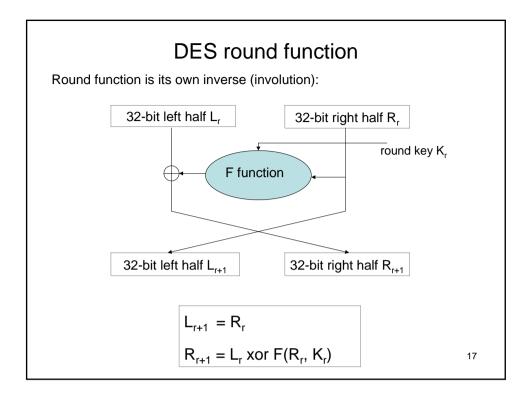


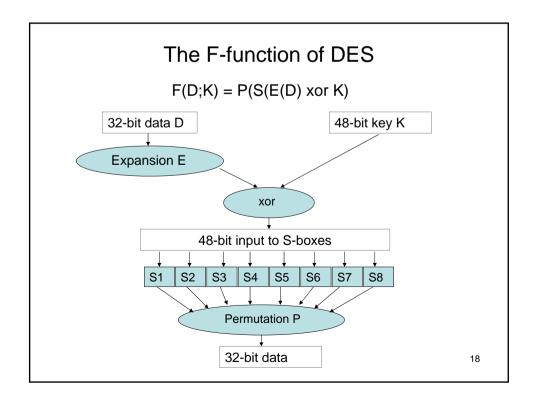


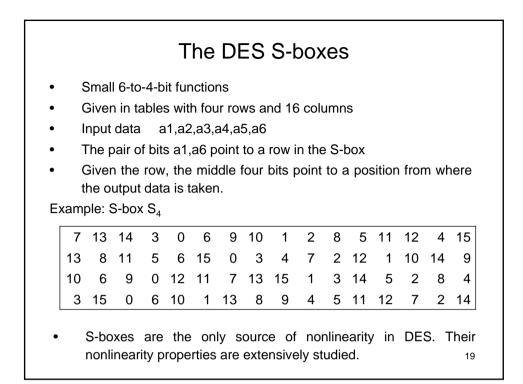
DES Data Encryption Standard 1977 - 2002

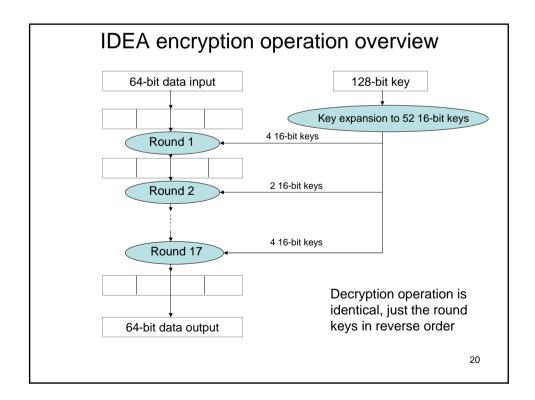
- Standard for 25 years
- Finally found to be too small. DES key is only 56 bits, that is, there are about 10¹⁶ different keys. By manufacturing one million chips, such that, each chip can test one million keys in a second, then one can find the key in about one minute.
- The EFF DES Cracker built in 1998 can search for a key in about 4,5 days. The cost of the machine is \$250 000.
- DES has greately contributed to the development of cryptologic research on block ciphers.
- The design was a joint effort by NSA and IBM. The design principles were not published until little-by-little. The complete set of design criteria is still unknown.
- Differential cryptanalysis 1989
- Linear cryptanalysis 1993

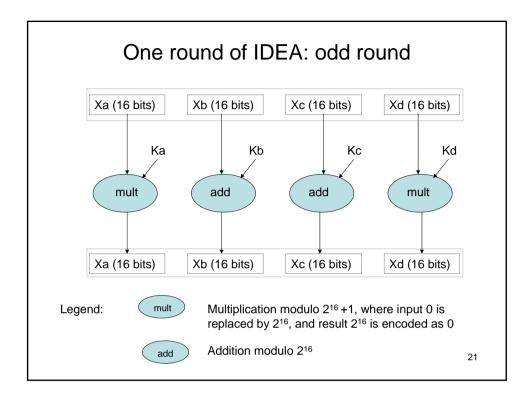


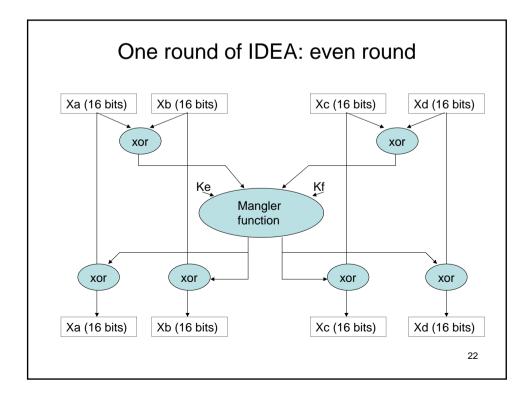


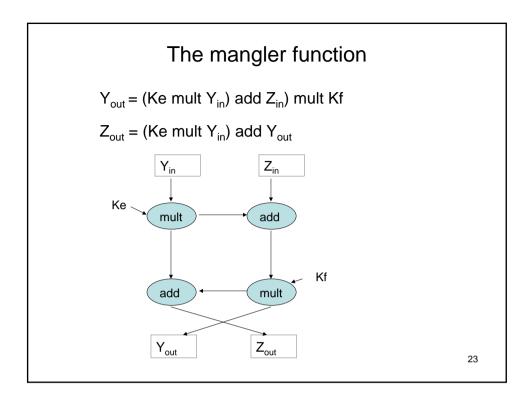


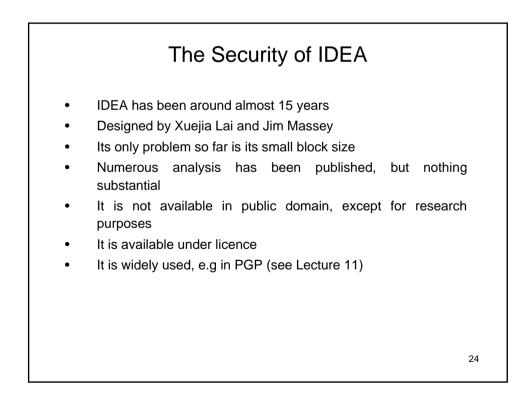


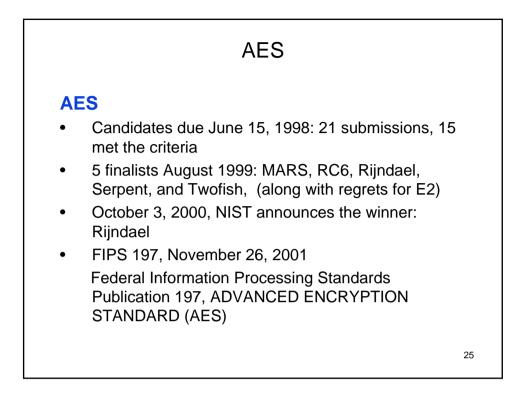


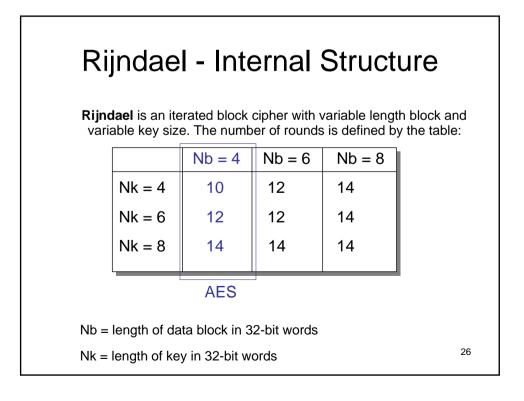


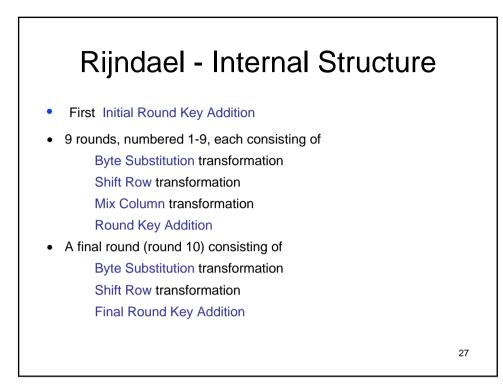




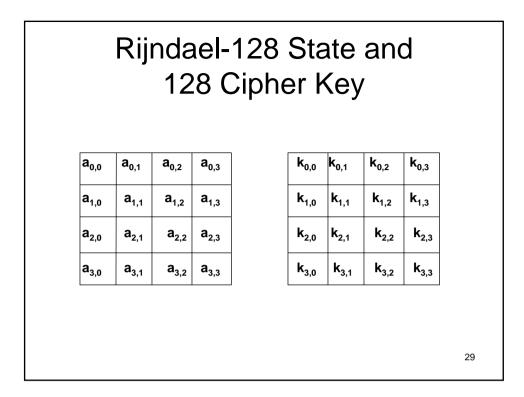


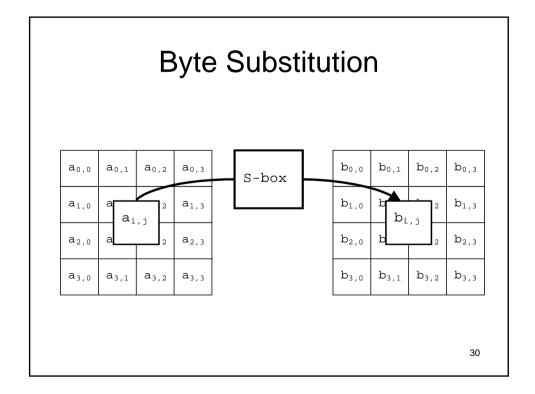






ENCRYPT	DECRYPT
nitial Round Key Add	Final Round Key Add — Inv Initial Round Key Add
Byte Substitution	Inv Shift Row
Shift Row	Inv Byte Substitution Inv Shift Row
Mix Column	Round Key Addition 🔍 🗸 Inv Mix Column
Round Key Addition	Inv Mix Column Inv Round Key Addition
eig	ght more rounds like this
Byte Substitution	Inv Shift Row





Sbox[256] = {

99,124,119,123,242,107,111,197, 48, 1,103, 43,254,215,171,118, 202,130,201,125,250, 89, 71,240,173,212,162,175,156,164,114,192, 183,253,147, 38, 54, 63,247,204, 52,165,229,241,113,216, 49, 21, 4,199, 35,195, 24,150, 5,154, 7, 18,128,226,235, 39,178,117, 9,131, 44, 26, 27,110, 90,160, 82, 59,214,179, 41,227, 47,132, 83,209, 0,237, 32,252,177, 91,106,203,190, 57, 74, 76, 88,207, 208,239,170,251, 67, 77, 51,133, 69,249, 2,127, 80, 60,159,168, 81,163, 64,143,146,157, 56,245,188,182,218, 33, 16,255,243,210, 96,129, 79,220, 34, 42,144,136, 70,238,184, 20,222, 94, 11,219, 224, 50, 58, 10, 73, 6, 36, 92,194,211,172, 98,145,149,228,121, 231,200, 55,109,141,213, 78,169,108, 86,244,234,101,122,174, 8, 186,120, 37, 46, 28,166,180,198,232,221,116, 31, 75,189,139,138, 112, 62,181,102, 72, 3,246, 14, 97, 53, 87,185,134,193, 29,158, 225,248,152, 17,105,217,142,148,155, 30,135,233,206, 85, 40,223, 140,161,137, 13,191,230, 66,104, 65,153, 45, 15,176, 84,187, 22};

