1. Assume that an HMAC are using SHA-1 as the underlying hash function. Given a fixed key, what kind of message independent pre-computations can be performed to speed up the computations?
2. Compute the following: $\phi(41), \phi(27)$, and $\phi(231)$.
3. (a) For what type of number n is $\phi(n)$ largest (relative to n)?
(b) For what type of number n is $\phi(n)$ smallest (relative to n)?
(c) Is it possible for $\phi(n)$ to be bigger than n ?
4. The example used by Sun-Tse to illustrate the Chinese Remainder Theorem was

$$
\begin{aligned}
x & \equiv 2(\bmod 3) \\
x & \equiv 3(\bmod 5) \\
x & \equiv 2(\bmod 7)
\end{aligned}
$$

Solve for x.
5. Perform encryption and decryption using the RSA algorithm for the following:
(a) $p=3, q=11, e=7$, for $M=5$;
(b) $p=17, q=13, e=7$, for $M=2$.
6. In RSA,
(a) is it possible for more than one d to work with a given e, p, and q ?
(b) given that the prime p is about twice as large as q, approximately how large $\phi(n)$ is compared to n ?

