T-79.4501 Cryptography and Data Security

2006 / Homework 2
Mon 30.1 and Wed 1.2

1. a) Use the Extended Euclidean Algorithm to compute the inverse of 357 modulo 1234.
b) Use the Extended Euclidean Algorithm to compute the inverse of $x^{3}+x$ modulo $x^{5}+x^{2}+1$.
2. Consider the DES S-box S_{4}

7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14

(a) For the following 6 -bit inputs: $000000,010011,101100,111011$, what are the corresponding outputs?
(b) Show that the second row of S_{4} can be obtained from the first row by means of the following mapping:

$$
\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \mapsto\left(y_{2}, y_{1}, y_{4}, y_{3}\right) \oplus(0,1,1,0)
$$

3. The Mangler function of IDEA takes two 16-bit data inputs $Y_{i n}$ and $Z_{\text {in }}$ and it produces two 16 -bit outputs $Y_{\text {out }}$ and $Z_{\text {out }}$, and it is controlled by two 16 -bit keys $K e$ and $K e$ (see Lecture 3). Compute the outputs with the following keys and inputs:
(a) $K e=K f=1024$ and $Y_{i n}=Z_{\text {in }}=64$
(b) $K e=Z_{i n}=512$ and $K f=Y_{i n}=128$
4. In the round key expansion procedure Rijndael makes use of constants $C_{i}, i=$ $1,2,3, \ldots, 30$ that can be computed as

$$
C_{i}=2^{i-1}
$$

in polynomial arithmetic modulo $m(x)=x^{8}+x^{4}+x^{3}+x+1$. Compute C_{11}, C_{12} and C_{13}.
5. Draw a picture describing the decryption operation of the CBC mode.
6. Suppose that a block cipher is used in CBC mode.
(a) Suppose that a sequence $P_{i}, i=1,2,3, \ldots$ of plaintext blocks have been encrypted. Assume that two equal ciphertext blocks are detected, say C_{k} and C_{ℓ} such that $C_{k}=C_{\ell}$. What can one say about the corresponding plaintexts P_{k} and P_{ℓ} ?
(b) Let n denote the block length. Using the result of (a) describe an attack which reveals some information about the plaintext, and which succeeds with probability $1 / 2$ after about $2^{n / 2}$ ciphertext blocks have been decrypted.

