
T-79.4501
Cryptography and Data Security

Summary
Autumn 2006

Course Contents (1-6)

• Introduction to data security
• Classical cryptosystems
• Introduction to modern cryptography
• Polynomial arithmetic, Euclidean algorithm; Block

ciphers: DES, IDEA, AES
• Stream ciphers: RC4, and other examples
• Block cipher modes of operation
• Hash-functions and MACs
• Mathematical tools: Modular arithmetic, Chinese

Remainder Theorem, Euler’s totient function, Euler’s
theorem

Course Contents (7-12)

• Public key cryptosystems: RSA
• Prime number generation
• Public key cryptosystems: Diffie-Hellman, El Gamal,

DSS
• Authentication and Digital signatures
• Random number generation and Key management
• Example: Bluetooth security
• Authentication and key agreement protocols in

practise: PGP, SSL/TLS, IPSEC, IKEv2 and EAP

Model for network security
M

es
sa

ge

S
ec

ur
e

M
es

sa
ge

S
ec

ur
e

M
es

sa
ge

M
es

sa
ge

Secret
information

Security related
transformation

Secret
information

Security related
transformation

Sender

Trusted
third party

Receiver

Opponent

Threat model
• How to define security (needs) in practise:

– First perform threat analysis: cababilities of an attacker, possible
attack scenarios

– Security can then be defined in terms of combatting the perceived
threats

– Not all threats are worth of combatting, absolute security cannot be
achieved

• Dolev-Yao attacker model against cryptographic protocols:
An attacker
– is a legitimate user of the network, and hence able to correspond

with any other user
– can send messages to another user by impersonating any other

user
– can receive messages intended to any other user

Computer and Communication
Layers Security

System level security
“The system is as strong as its weakest link.”

Application security
e.g. banking applications over Internet use security mechanisms

which are tailored to meet their specific requirements.
Protocol level security

well-defined communication steps in certain well-defined order.
Operating system security

the behaviour of all elements in a network depends on the correct
functionality of the operating system that controls them.

Platform security
properties of the computing platform, e.g. protected memory space.

Security primitives
these are the basic building blocks, e.g. cryptographic algorithms.

Example: GSM Security
Main security technical features
• Authentication of the user

correct billing
• Encryption of communication over the radio

interface
confidentiality of user and control data
call integrity (⇒ correct billing)

• Use of temporary identities
user privacy
location privacy

MS (SIM) VLR HLR
IMSI, Ki and BTS {{IMSI,Ki}}

IMSI / TMSI IMSI

RAND RAND, XRES, Kc
Kc

SRES
SRES=XRES ?

encrypted TMSI

GSM Authentication

Criticism
Active attacks possible

– It is possible with suitable equipment to masquerade
as a legitimate network element and/or legitimate
user terminal

Missing or weak protection between networks
– control data, e.g. keys used for radio interface

ciphering, are sometimes sent unprotected between
different networks

Secret design
– some essential parts of the security architecture were

kept secret, e.g. the cryptographic algorithms

UE
BS

False BS

BS

Correct BS

Active Attack

Lessons learnt
• Use independent keys for different algorithms

so that a key captured from one broken
algorithm cannot be used to compromise
security of another algorithm.

• Use strong crypto only
• Active man-in-the-middle attacks in wireless

communication must be taken seriously
• Amendments to existing security system

extremely difficult to implement:
– updates to existing devices
– backwards compatibility
– version negotiation hard to protect (bidding-down

attacks)

Monoalphabetic substitution

Alphabets
Plain: abcdefghijklmnopqrstuvwxyz
Cipher: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Key = permutation of the 26 characters
Size of key space 26! ≅ 4 x 1026

Not possible to do exhaustive search over the key
space

Cryptanalysis is based on statistical properties of
the plaintext

Relative Frequency of Letters in English

A 8.167

B 1.492

C 2.782

D 4.253

E 12.702

F 2.228

G 2.015

H 6.094

I 6.996

J 0.153

K 0.772

L 4.025

M 2.406

N 6.749

O 7.507

P 1.929

Q 0.095

R 5.987

S 6.327

T 9.056

U 2.758

V 0.978

W 2.360

X 0.150

Y 1.974

Z 0.074

B L U E

F L A G

I S

D O T

R E D

F L A G

I S

D A S H

· · - · F

· - · · L

· - A

- - · G

· · · S

· · · · H

· · I

· - - · P

Playfair Cipher

M O N A R

C H Y B D

E F G I/J K

L P Q S T

U V W X Z

Plaintext formatting

oo -> oxo

Regular case

hs -> BP

ea -> IM

Same row or column

ar -> RM

mu -> CM

The encryption rules

Key: MONARCHY

is put first in a 5x5
matrix, which is then
filled out with the
remaining letters of the
alphabet (i = j)

Vigénère cipher: Kasiski’s method
• Many strings of characters repeat themselves in natural

languages.

• Assume the interval between occurence of a string is a
multiple of the length of the period.

• Then a repetition of a character string of the same length
occurs in the ciphertext.

• By detecting repetitions of strings in the ciphertext one
can find the period as the greatest common divisor (GCD)
of the repetition intervals

• Their may be false repetitions. The longer the repeating
string the more significant it is. Sometimes only strings of
length ≥ 3 are considered.

One Time Pad

• Claude Shannon laid (1949) the information
theoretic fundamentals of secrecy systems.

• Shannon’s pessimistic bound: For perfect
secrecy, the length of the key is at least as large
as the length of the plaintext.

• An example of a cipher which achieves perfect
secrecy is the One Time Pad

ci = (pi + ki)mod 26
where a new fresh random key k1 k2 k3 … ki… is

chosen for each new plaintext p1 p2 p3 … pi…
• Practical ciphers do not provide perfect secrecy

Primitives and protocols

• Cryptographic primitives and functions are used as
building blocks for cryptographic protocols

• For example,
• A stream cipher primitive is the basic building block

for an encryption protocol
• A message authentication code is the basic building

block for an authentication protocol

Different design approaches

• information theoretic
– security is measured in terms of probabilities

• complexity theoretic
– security measured in terms of computational and memory

requirements
• quantum cryptology
• system based

– security measured in terms of used cryptanalysis methods

Different assumptions:
• capabilities of an opponent
• cryptanalytic success
• definition of security (e.g., unconditional security, computational

security)

Man-made vs. Math-made

Symmetric primitives
• are based on man-made constructions;
• are fast and easy to implement in software and/or hardware:
• use short keys
Asymmetric (public key primitives)
• are based on mathematical construction and their security is

derived from infeasibility of some computationally hard problem.
• are slow and difficult to implement (both in software and

hardware)
• have long keys and parameters

It would be possible to construct symmetric primitives based on mathematics,
but they are not used in practise because they are not efficient compared
to symmetric primitives

Life Cycle of a Cryptographic Algorithm

DEVELOPMENT
• Construction
• Security proofs and arguments
• Evaluation
• Publication of the algorithm
• Independent evaluation

END
• Break; or
• Degradation by time
• Implementation attacks
• Side channel attacks

USE
• Implementation
• Embedding into system
• Key management
• Independent evaluation

Block ciphers

Confidentiality primitive
• Threat: retrieve the plaintext from the ciphertext without the

knowledge of the key.
• Security goal: protect against this threat.
Plaintext P: strings of bits of fixed length n
Ciphertext C: strings of bits of the same length n
Key K: string of bits of fixed length k
Encryption transformations: For each fixed key the encryption operation

EK is one-to-one (invertible) function from the set of plaintexts to
the set of ciphertext. That is, there exist an inverse transformation,
decryption transformation DK such that for each P and K we have:
DK (EK (P)) = P

(Message , Secret key) Ciphertext

(Ciphertext, Secret key) Message

Sender:

Receiver:

Birthday paradox

• No paradox, just somewhat counterintuitive
• Assume that numbers are randomly (with

equal probability) picked with replacement
from a set of N different numbers.

• Question: How many numbers must be
picked until the probability of getting at least
one number twice is at least 0.5 ?

• Answer: Approximately
• See Stallings Appendix 11A, p. 340.

N17.1

Birthday paradox: Derivation
Let k be the number drawn from the set of N elements with

replacement. Then
P = Pr[at least one match] = 1 – Pr[no match] =

Since N is large, we can approximate, for all i = 1,…, k-1

and get:

Then if , that is,
as desired.

∏
−

=
⎟
⎠
⎞

⎜
⎝
⎛ −−=⎟

⎠
⎞

⎜
⎝
⎛ −

−⎟
⎠
⎞

⎜
⎝
⎛ −⋅⎟

⎠
⎞

⎜
⎝
⎛ −⋅−

1

1

1111211111
k

i N
i

N
k

NN
L

N
k

N
kkk

i

i
NN

i

eeeeP

k

i 22
)1(1

1

1 2

1 1111
−

−
−−

=

−−
−≈−=

∑
−=−≈ ∏ =

N
i

e
N
i −

≈⎟
⎠
⎞

⎜
⎝
⎛ −1

2ln

2
1 −=≈ eP 2ln22 Nk ≈ NNk 17.12ln2 ≈≈

Generic attack on block ciphers

Let n be the block length in bits. Then if the block
cipher encryption operation is used about 2n/2

times with the same key on any randomly
generated data as plaintext, then by Birthday
Paradox, the probability of having two equal
ciphertexts is about ½. Then one knows that the
two corresponding input data are equal.

Stream ciphers
• Stream ciphers are generally faster than block ciphers, especially

when implemented in hardware.
• Stream ciphers have less hardware complexity.
• Stream ciphers can be adapted to process the plaintext bit by bit, or

word by word, while block ciphers require buffering to accumulate
the full plaintext block.

• Synchronous stream ciphers have no error propagation; encryption
is done character by character with keys Ki that are independent of
the data

Ci = EKi(Pi)
• Function E is simple, the function which computes the key

sequence is complex
• Example: Vigenère cipher, One Time Pad

Ci = (Pi + Ki)mod 26

Stream cipher encryption

Secret key Key stream

(Key stream , Message) Ciphertext

Secret key Key stream

(Ciphertext, Key stream) Message

Receiver:

Sender:

Stream ciphers: Security

• Known plaintext gives known key stream. Chosen plaintext gives
the same but nothing more.

• Chosen ciphertext attack may be a useful method for analysing a
self-synchronising stream cipher.

• The attacker of a stream cipher may try to find one internal state
of the stream cipher to obtain a functionally equivalent algorithm
without knowing the key.

• Distinguishing a keystream sequence from a truly random
sequence allows also the keystream to be predicted with some
accuracy. Such attack is also called prediction attack.

Requirements:
• Long period
• A fixed initialisation value the stream cipher generates a different

keystream for each key.

Polynomial Arithmetic

• Modular arithmetic with polynomials
• We limit to the case where polynomials have binary

coefficients, that is, 1+1 = 0, and + is the same as -.
Example:

Computation means that everywhere
we take , for example, we can take

))1(mod()1(
1

)1)(1(

4245

324235

32

++=⋅=+⋅=+

=++++++++

=++++

xxxxxxxxx
xxxxxxxx

xxxx

)1mod(4 ++ xx
014 =++ xx

.14 xx =+

Galois Field

Given a binary polynomial f(x) of degree n, consider a set of binary
polynomials with degree less than n. This set has 2n polynomials.
With polynomial arithmetic modulo f(x) this set is a ring.

Fact: If f(x) is irreducible, then this set with 2-ary (binary) polynomial
arithmetic is a field denoted by GF(2n).

In particular, every nonzero polynomial has a multiplicative inverse
modulo f(x). We can compute a multiplicative inverse of a
polynomial using the Extended Euclidean Algorithm.

The next slide presents the Extended Euclidean Algorithm for
integers. It works exactly the same way for polynomials.

Extended Euclidean Algorithm for integers
and computing a modular inverse

Fact: Given two positive integers a and b there exist integers u and v such
that

u·a + v·b = gcd(a,b)
In particular, if gcd(a,b) =1, there exist positive integers u and v such that

u·a = 1 (mod b), and v·b = 1 (mod a).
The integers u and v can be computed using the Extended Euclidean
Algorithm, which iteratively finds integers ri , ui and vi such that

r0 = b, r1 = a; u0 = 0, u1 = 1; v0 = 1, v1 = 0
and for i = 2,3,… we compute qi such that

ri-2 = qi·ri-1 + ri , where 0 ≤ ri < ri-1 .
We set: ui = ui-2 - qi ·ui-1 and vi = vi-2 - qi · vi-1. Then ri = ui ·a + vi ·b .

Let n be the index for which rn > 0 and rn+1 = 0. Then
rn = gcd(a,b) and un= u and vn= v.

Extended Euclidean Algorithm: Example
gcd(595,408) = 17 = u×595 + v×408

i qi ri ui vi

0 - 595 1 0

1 - 408 0 1

2 1 187 1 -1

3 2 34 -2 3

4 5 17 11 -16

Extended Euclidean Algorithm for polynomials
Example

i qi ri ui vi

0 x4 + x +1 0 1

1 x2 1 0

2 x2 x +1 x2 1

3 x x x3 +1 x

4 1 1 x3 + x2 +1 x +1

Example: Compute the multiplicative inverse of x2 modulo x4 +x+1

Extended Euclidean Algorithm for polynomials
Example cont’d

So we get

u4⋅x2 + v4⋅(x4 + x +1) = (x3 + x2 +1)x2 +(x +1)(x4 +x +1) = 1 = r4

from where the multiplicative inverse of x2 mod x4 + x +1
is equal to x3 + x2 +1.

Motivation for polynomial arithmetic:

• uses all n-bit numbers (not just those less than some
prime p)

• provides uniform distribution of the multiplication result

Example: Modulo 23 arithmetic compared to
GF(23) arithmetic (multiplication).

In GF(2n) arithmetic, we identify polynomials of degree
less than n:

with bit strings of length n :

and further with integers less than 2n:

Example: In GF(23) arithmetic with polynomial x3 + x +1
(see next slide) we get:

4⋅3 = (100) ⋅(011) = x2⋅ (x+1)= x3 + x2 = (x+1) + x2 = x2 + x +1
= (111) = 7

01
2

2
2

2
1

1 axaxaxaxa n
n

n
n +++++ −

−
−

− L

),,,,(0121 aaaa nn K−−

01
2

2
2

2
1

1 2222 aaaaa n
n

n
n +++++ −

−
−

− L

Multiplication tables

1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 2 4 6 0 2 4 6
3 3 6 1 4 7 2 5
4 4 0 4 0 4 0 4
5 5 2 7 4 1 6 3
6 6 4 2 0 6 4 2
7 7 6 5 4 3 2 1

1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 2 4 6 3 1 7 6
3 3 6 5 7 4 1 2
4 4 3 7 6 2 5 1
5 5 1 4 2 7 3 6
6 6 7 1 5 3 2 4
7 7 5 2 1 6 4 3

modulo 8 arithmetic GF(23) Polynomial arithmetic

Block ciphers, design principles
• The ultimate design goals of a block cipher:

– use the secret key as efficiently as possible
– no better attack than exhaustive key search

• Confusion and diffusion (Shannon)
• New design criteria are being discovered as response

to new attacks.
• A state-of-the-art block cipher is constructed taking

into account all known attacks and design principles.
• But no such block cipher can become provably secure,

it may remain open to some new, unforeseen attacks.
• Common constructions with iterated round function

– Substitution permutation network (SPN)
– Feistel network

DES encryption operation overview
64-bit data input

Round 1

Round 2

Round 16

64-bit data output

Initial Permutation IP

Final Permutation IP-1

56-bit key

Generate 16 round keys

48-bit key

48-bit key

48-bit key

Decryption operation is
identical, just the round
keys in reverse order

DES round function
Round function is its own inverse (involution):

32-bit left half Lr 32-bit right half Rr

32-bit left half Lr+1 32-bit right half Rr+1

round key Kr

F function

Lr+1 = Rr

Rr+1 = Lr xor F(Rr, Kr)

The F-function of DES
F(D;K) = P(S(E(D) xor K)

32-bit data D 48-bit key K

Expansion E

xor

48-bit input to S-boxes

32-bit data

Permutation P

S1 S2 S3 S4 S5 S6 S7 S8

The DES S-boxes
• Small 6-to-4-bit functions
• Given in tables with four rows and 16 columns
• Input data a1,a2,a3,a4,a5,a6
• The pair of bits a1,a6 point to a row in the S-box
• Given the row, the middle four bits point to a position from where

the output data is taken.
Example: S-box S4

• S-boxes are the only source of nonlinearity in DES. Their
nonlinearity properties are extensively studied.

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

IDEA encryption operation overview

64-bit data input

Round 1

Round 2

Round 17

64-bit data output

128-bit key

Key expansion to 52 16-bit keys
4 16-bit keys

2 16-bit keys

4 16-bit keys

Decryption operation is identical.
The round keys are used in the
reverse order and at the odd
rounds replaced by the inverse
values.

One round of IDEA: odd round

Xa (16 bits) Xd (16 bits)Xc (16 bits)Xb (16 bits)

Xd (16 bits)Xc (16 bits)Xb (16 bits)Xa (16 bits)

mult add add mult

Ka Kb Kc Kd

mult

add Addition modulo 216

Legend: Multiplication modulo 216 +1, where input 0 is
replaced by 216, and result 216 is encoded as 0

One round of IDEA: even round

Xa (16 bits) Xd (16 bits)Xc (16 bits)Xb (16 bits)

xor xor

xor xorxorxor

Xa (16 bits) Xd (16 bits)Xc (16 bits)Xb (16 bits)

KfKe
Mangler
function

This function is its own inverse!

The mangler function

Yout = (Ke mult Yin) add Zin) mult Kf

Zout = (Ke mult Yin) add Yout

Yin Zin

Yout Zout

mult

mult

add

add
Ke

Kf

The Security of IDEA

• IDEA has been around almost 15 years
• Designed by Xuejia Lai and Jim Massey
• Its only problem so far is its small block size
• Numerous analysis has been published, but nothing

substantial
• It is not available in public domain, except for research

purposes
• It is available under licence
• It is widely used, e.g in PGP (see Lecture 11)

AES

AES
• Candidates due June 15, 1998: 21 submissions, 15

met the criteria
• 5 finalists August 1999: MARS, RC6, Rijndael,

Serpent, and Twofish, (along with regrets for E2)
• October 3, 2000, NIST announces the winner:

Rijndael
• FIPS 197, November 26, 2001

Federal Information Processing Standards
Publication 197, ADVANCED ENCRYPTION
STANDARD (AES)

Rijndael - Inverse Structure
ENCRYPT DECRYPT INV ENCRYPT

Initial Round Key Add Final Round Key Add Inv Initial Round Key Add

Byte Substitution Inv Shift Row Inv Byte Substitution

Shift Row Inv Byte Substitution Inv Shift Row

Mix Column Round Key Addition Inv Mix Column

Round Key Addition Inv Mix Column Inv Round Key Addition

… eight more rounds like this

Byte Substitution Inv Shift Row Inv Byte Substitution

Shift Row Inv Byte Substitution Inv Shift Row

Final Round Key Add Initial Round Key Add Inv Final Round Key Add

Rijndael S-box Design View
Galois field GF(28) with polynomial

m(x) = x8 + x4 + x3 + x + 1
The Rijndael S-box is the composition f ° g where Inv (f ° g) =

g(x) = x -1 , x ∈ GF(28), x ≠ 0, and g ° (Inv f)
g(0) = 0

and f is the affine transformation defined by y = f(x)

yo 1 0 0 0 1 1 1 1 x0 1
y1 1 1 0 0 0 1 1 1 x1 1
y2 1 1 1 0 0 0 1 1 x2 0
y3 1 1 1 1 0 0 0 1 x3 0
y4 1 1 1 1 1 0 0 0 x4 0
y5 0 1 1 1 1 1 0 0 x5 1
y6 0 0 1 1 1 1 1 0 x6 1
y7 0 0 0 1 1 1 1 1 x7 0

= +

Mix Column - Implemented
The mix column transformation mixes one column of the

state at a time.

Column j:

b0,j = T2(a0,j) ⊕ T3(a1,j) ⊕ a2,j ⊕ a3,j
b1,j = a0,j ⊕ T2(a1,j) ⊕ T3(a2,j) ⊕ a3,j
b2,j = a0,j ⊕ a1,j ⊕ T2(a2,j) ⊕ T3(a3,j)
b3,j = T3(a0,j) ⊕ a1,j ⊕ a2,j ⊕ T2(a3,j)

where:

T2(a) = 2*a if a < 128
T2(a) = (2*a) ⊕ 283 if a ≥ 128
T3(a) = T2(a) ⊕ a.

Mix Column - Design view
The columns of the State are considered as polynomials over GF(28).
They are multiplied by a fixed polynomial c(x) given by

c(x) = 03· x3 + 01· x2 + 01· x + 02
The product is reduced modulo x4 + 01.
Matrix form

b0,j 02 03 01 01 a0,j
b1,j 01 02 03 01 a1,j
b2,j 01 01 02 03 a2,j
b3,j 03 01 01 02 a3,j

The Inverse Mix Column polynomial is c(x)-1 mod (x4 + 01) = d(x)
given by

d(x) = 0B· x3 + 0D· x2 + 09· x + 0E

=

The Security of AES

• Designed to be resistant against differential and
linear cryptanalysis

– S-boxes optimal
– Wide Trail Strategy

• Has quite an amazing algebraic structure (see the
next slide)

• Algebraic cryptanalysis tried but not yet (!)
successful

• Algebraic cryptanalysis: given known plaintext –
ciphertext pairs construct algebraic systems of
equations, and try to solve them.

Differential and linear cryptanalysis

Differential cryptanalysis (Biham-Shamir 1990)
– Chosen plaintext attack
– A large number of pairs of plaintext blocks are

generated. Each pair of plaintext has a fixed
difference. Corresponding ciphertexts are computed
(using the encryption device with a fixed key as black
box).

– Main idea: The statistics of the differences of the data
blocks before the last round can be predicted.

– Exhaustive search of the last round key are performed
by testing if decryptions with the candidate key of the
ciphertext pairs gives results that match with the
predicted statistics.

Differential and linear cryptanalysis

Linear cryptanalysis (Matsui 1993)
– Known plaintext attack
– A large number of plaintext blocks and their

corresponding ciphertexts are known.
– Main idea: The statistics of a fixed linear combination

of the data bits before the last round can be predicted
by some fixed linear combination of the plaintext bits.

– Exhaustive search of the last round key are performed
by testing if decryptions with the candidate key of the
ciphertext blocks gives results that match with the
predicted statistics.

Stream ciphers: Designs

Linear feedback shift register (LFSR). LFSRs are often used as the
running engine for a stream cipher.
Stream cipher design based on LFSRs uses a number of different
LFSRs and nonlinear Boolean functions coupled in different ways.
Three common LFSR-based types of stream cipher can be
identified:

– Nonlinear combination generators: The keystream is generated as a
nonlinear function of the outputs of multiple LFSRs

– Nonlinear filter generators: The keystream is generated as a nonlinear
function of stages of a single LFSR.

– Clock controlled generators: In these constructions, the necessary
nonlinearity is created by irregular clocking of the LFSRs. The GSM
encryption algorithm A5/1 is an example of a stream cipher of this type.

Synchronous stream cipher: encryption

State

Message xor Ciphertext

state
update

Ki

CiPi

Initial state

Key

Keystream

The taps are defined be giving the feedback polynomial

nttntn

n

i
itint scscscscs −−−−−

=
−− +++== ∑ 02211

1

K

Linear Feedback Shift Register (LFSR)

cn-1 cn-2 cn-3

ci

c1

st-n

c0

st-n

⊕⊕ ⊕ ⊕

01
2

2
1

1)(cxcxcxcxxf n
n

n
n

n +++++= −
−

−
− K

st-1 st-2 st-3 st-n+1

st

, for all t ≥ n.

LFSR: Example

1)(34 ++= xxxf
⊕

NOTE: Assume now that everything is binary, that is, in
bits. Sums are taken mod 2. (Non-binary LFSRs exist.)

0 0 1 1

1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

… … … …

 0 and ====⇒ 2130 1 cccc

Let us take this as an initial state:

Then the next state is this:

And so on:

For how long it goes?

LFSR statistical properties
The maximum length of the cycle for an LFSR of length n is
2n -1. With maximum cycle the LFSR produces a sequence

of length 2n -1 .
A maximum length sequence has ideal statistical properties:

– 2n-1 -1 zeroes and 2n-1 ones
– One string of ones of length n; one string of zeroes of

length n-1
– Also ones and zeroes occur in about equally many

pairs, triples ... , and so on.
A maximum length sequence (m-sequence) is achieved using

a so-called primitive polynomials. For a source of
primitive polynomials see:

http://fchabaud.free.fr/English/default.php?COUNT=1&FILE0=Poly

http://fchabaud.free.fr/English/default.php?COUNT=1&FILE0=Poly

Autocorrelation function
• The spectral properties of a periodic sequence can be

analyzed using a number of transforms related to
discrete Fourier transform. One such transform is the
Autocorrelation function C(k), k ∈ N, defined as
follows:

• Let N be the length of the cycle (period) of the
sequence s0, s1 , …, si,….Then

∈−−= +

−

=
∑ kss

N
kC ki

N

i
i),12)(12(1)(

1

0
N

• Clearly, C(k) = C(N - k), for all k ∈ {0,1,…,N}.

Golomb’s randomness postulates
R1: In the cycle of the sequence the number of 1-bits differs from the

number of 0-bits by at most 1.
R2: In the cycle of the sequence, at least ½ of the runs have length 1, at

least one ¼ have length 2, at least ⅛ have length 3, etc., as long as
the number of runs so indicated exceeds 1. Moreover, for each of
these lengths, there are (almost) equally many gaps and blocks.

R3: Let N be the length of the cycle (period) of the sequence (si).The
autocorrelation function is two-valued. That is, for some integer K:

Note: In general the autocorrelation function takes more than two values
Definition: A binary sequence which satisfies Golomb’s randomness

postulates is called a pseudo-noise or a pn-sequence.

⎪⎩

⎪
⎨
⎧

−≤≤

=
= 11 if,

,0 if ,1
)(Nk

N
K

k
kC

Example
Consider the sequence with cycle length 15:

0 1 1 0 0 1 0 0 0 1 1 1 1 0 1

R1: The number of 0-bits is 7, the number of 1-bits is 8
R2: the sequence has eight runs:

4 runs of length 1(2 gaps and 2 blocks)
2 runs of length 2 (1 gap and 1 block)
1 run of length 3 (1 gap)
1 run of lenght 4 (1 block)

R3: The autocorrelation function C(k) takes on two values
C(0) = 1 and C(k) = -1/15, for k ≠ 0

Combination generator

1 toequal are inputs theof least twoat if,1)3,2,1(=xxxt

x1i
LFSR1

LFSR2

LFSR3

t
x2i

x3i

Ki

otherwise,0

Example: Threshold generator

RC4

i j

)(jS)(iS

256mod)1(
)(ouput

256mod))((
swapped)(are)(

)(

+=
=
+=

=

ii
kS
jSjk
jSiS

iSj

Register of 256 octets initialised using the key.
Counter i is set to zero. Then:

4.2 Block cipher confidentiality modes of
operation

Block ciphers are used in different modes of operation.
• AES modes of operation:

– ELECTRONIC CODEBOOK MODE (ECB)
– CIPHER BLOCK CHAINING (CBC)
– CIPHER FEEDBACK (CFB)
– OUTPUT FEEDBACK (OFB)
– COUNTER MODE (CTR)

standardized by NIST, Special Publication 800-38A , see:
http://csrc.nist.gov/publications/nistpubs/index.html

DES algorithm not secure any more (small key size), enhancement
• Triple DES Special Publication 800-67

http://csrc.nist.gov/publications/nistpubs/index.html
http://csrc.nist.gov/publications/nistpubs/index.html

ECB encryption

Plaintext Ciphertext

Cipher Block Chaining (CBC) Mode:
Encryption

⊕ ⊕

EncryptK Encrypt

P2

Encrypt

Pi

C2 Ci

KK

P1

C1

⊕IV

IV

K

Counter=0

AES
encryption

K AES
encryption

K AES
encryption

K

K0 = KS[0]…KS[127] K1=KS[128]…KS[256] K2=KS[256]…KS[384]

AES
encryption

Counter=1 Counter=2 Counter = length - 1

Counter Mode
Synchronous Key Stream Generator

Triple DES (TDEA, 3DES)
DES algorithm is not strong any more (small key size)

Double DES with two different keys K1 and K2 not good
either (security not more than single DES) due to the
Meet-in-the-Middle Attack (see next slide):

Triple DES Special Publication 800-67, see

Triple DES with two keys

reduces to single DES if we select K1 = K2 . In this manner
compatibility with legacy applications can be achieved.

http://csrc.nist.gov/publications/nistpubs/index.html

)))(((
121

PEDEC KKK=

http://csrc.nist.gov/publications/nistpubs/index.html

Meet in the Middle

Double DES with two different keys K1 and K2 is not
good: security is not (essentially) more than single DES
due to the Meet-in-the-Middle Attack. Such attack can
be launched when the attacker has two known
plaintext-ciphertext pairs (P,C) and (P’,C’) where

encryption is done with the same keys values K1 and

K2 . Then the attacker has

or what is the same:

))((and))((
1212

PEECPEEC KKKK ′=′=

).()(and)()(
1212

PECDPECD KKKK ′=′=

Meet in the Middle …
Now we make a table T with a complete listing of all possible
pairs as K2 runs through all possible 256 values.
The table has 256 rows with 120 bits on each row. We make
one more column to this table, and fill it with K1 values as
follows: For each K1 we compute the value and
search in the table T for a match . For each K2

we expect to find a (almost) unique K1such that such a match
occurs. Now we go through all key pairs K1 , K2 suggested by
table T, and test against the equation
we have based on the second plaintext – ciphertext pair
(P’,C’). The solution is expected to be unique. The size of
table T is 256 (56 + 64 + ∼56 bits) < 264 bits, which is the memory
requirement of this attack. The number of encryptions
(decryptions) needed is about 4·256= 258.

)(,
22 CDK K

)(
1

PEK

)()(
12

PECD KK =

)()(
12

PECD KK ′=′

Message authentication codes (MAC)

• A MAC of a message P of arbitrary length is computed as a
function HK(P) of P under the control of a secret key K.

• The MAC length m is fixed.
• Security requirement: it must be infeasible, without the knowledge

of the secret key, to determine the correct value of HK(P) with a
success probability larger than 1/2m. This is the probability of
simply guessing the MAC value correctly at random. It should not
be possible to increase this probability even if a large number of
correct pairs P and HK(P) is available to the attacker.

(Secret key , Message) MAC

(Secret key , Message) MAC

Sender:

Receiver:

CBC MAC

• CBC encryption with fixed IV = 00…0. The last
ciphertext block (possibly truncated) is taken as the
MAC.

⊕ ⊕

EncryptK Encrypt

P2

Encrypt

Pn

M

KK

P1

⊕

A MAC mode of operation of any block cipher

Polynomial MAC
• Another MAC suitable for use with stream ciphers
• Idea: An (cryptographically insecure) error detecting code is encrypted using

non-repeating keystream (ideally, a one-time pad)

• An n-block message with block size m bits is
associated with the polynomial with m-bit coefficients Pi ∈GF(2m):

• The value of the polynomial taken in point x ∈ GF(2m) is taken as an
m-bit string P(x) ∈ GF(2m) .

• The secret key K consists of a point x = X and an m-bit one-time key
stream string .

• First the message polynomial is evaluated at the point x = X. Let us
denote . The MAC is computed as the xor of
the key stream string and the value as

110 ,,, −= nPPPP K

1
1

2
210)(−

−++++= n
n xPxPxPPxP K

),,,,(1210 −mkkkk K

),,,,()(1210 −= mccccxP K

),,,,()(11221100 −− ⊕⊕⊕⊕= mmK kckckckcPH K

Note: The point X can be reused for different messages

Hash functions

• A hash code of a message P of arbitrary length is computed as a function
H(P) of P . The hash length m is fixed.

• Security requirements:

1. Preimage resistance: Given h it is impossible to find P such that H(P)
= h

2. Second preimage resistance: Given P it is impossible to find P’ such
that H(P’) = H(P)

3. Collision resistance: It is impossible to find P and P’ such that P ≠ P’
and H(P’) = H(P)

Message Hash code

Message Hash code

Sender:

Receiver:

Hash functions

• Similarly as MAC algorithms, hash functions typically operate on
relatively large blocks of data. Most hash functions are iterated
constructions. The core function in a hash function is a
compression function. At each round the compression function
takes a new data block and compresses it together with the
compression result from the previous rounds. Hence the length of
the message to be authenticated determines how many iteration
rounds are required to compute the MAC value.

• Hash function is public: Given a message P anybody can compute

the hash code of P.

Collision Attack
• An upperbound to the security of hash functions is due to

the collision probability which is estimated using Birthday
Paradox.

• Random oracle: Given a message an ideal hash
function, with m-bit output, computes the hash value by
selecting the value uniformly at random from all possible
2m values. To find a collision with probability at least 1/2,
approximately 1,17·2m/2 messages need to be hashed.
This gives an estimate to the workload of making the
collision attack successful.

Revised SHA Standard

SHA-1 SHA-256 SHA-384 SHA-512

Hash size 160 256 384 512

Message size < 264 < 264 < 2128 < 2128

Block size 512 512 1024 1024

Word size 32 32 64 64

Number of steps 80 80 80 80

Claimed security 280 2128 2192 2256

csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

HMAC- hash based MAC

• RFC 2104: the MAC for IP security
• To use available hash functions
• To allow hash function to be replaced easily
• To preserve the performance of a hash function
• Easy handling of keys
• Well understood cryptographic security

• Recent collision attacks against hash functions
do not effect HMAC constructions

HMAC algorithm
H hash function
M message input to HMAC (after hash function

specific padding added)
L number of blocks in M
b number of bits in a block
n length of the hash code of H
K secret key, recommended length ≥ n
K+ a b-bit string formed by appending zeros to the end

of K
ipad = 00110110 repeated b/8 times
opad = 01011100 repeated b/8 times

HMAC(K;M)= H[(K+ ⊕ opad) || H[(K+ ⊕ ipad)||M]]

Public key encryption

• Slow, usually used to encrypt short messages in more complex
protocols than just bulk message encryption: data authentication, key
agreement etc.

• Because of the mathematical structures involved, complex message
formatting rules (with hash functions) are required.

• Chosen ciphertext attacks maybe an essentially more serious threat
than chosen plaintext (for symmetric block ciphers they are about the
same). We will see an example later.

• RSA, ElGamal in different groups, Pairing based techniques …

(Message , Public key) Ciphertext

(Ciphertext , Private key) Message

Sender:

Receiver:

Chinese Remainder Theorem (two moduli)

Problem: Assume m1 and m2 are coprime. Given x1 and x2,
how to find 0 ≤ x < m1 m2 such that
x = x1 mod m1

x = x2 mod m2

Solution: Use the Extended Euclidean Algorithm to find
u and v such that u · m1 + v · m2 = 1. Then

x = x ·(u · m1 + v · m2) = x · u · m1 + x · v · m2

= (x2 + r · m2) · u · m1 + (x1 + s · m1) · v · m2.
It follows that
x = x mod (m1 m2)= (x2 · u · m1 + x1 · v · m2) mod (m1 m2)

Chinese Remainder Theorem (general case)
Theorem: Assume m1, m2, …,mt are mutually coprime.

Denote M = m1 · m2 · … · mt . Given x1, x2, …,xt there exists
a unique x, 0 ≤ x < M, such that
x = x1 mod m1
x = x2 mod m2
…

x = xt mod mt

x can be computed as

x = (x1· u1 · M1 + x2 · u2 · M2 + …+ xt · ut · Mt) mod M,

where Mi = (m1 · m2 · … · mt)/mi and ui = Mi
-1 (mod mi).

Proof: For the case t =2 see previous page. The general
case is handled in T-79.5501.

Chinese Remainder Theorem: Example

Let m1 = 7, m2 = 11, m3 = 13. Then M = 1001.
Problem: Compute x, 0 ≤ x ≤ 1000 such that

x = 5 mod 7
x = 3 mod 11
x = 10 mod 13

Solution:
M1 = m2m3 = 143; M2 = m1m3 = 91; M3 = m1m2 = 77
u1 = M1

-1 mod m1 = 143-1 mod 7= 3-1 mod 7 = 5; similarly
u2 = M2

-1 mod m2 = 3-1 mod 11 = 4; u3 = (-1)-1 mod 13 = -1.
Then
x = (5 · 5 · 143 + 3 · 4 · 91 +10 ·(-1) · 77) mod 1001 = 894

Euler’s Totient Function φ(n)

Definition: Let n > 1 be integer. Then we set
φ(n) = #{ a | 0 < a < n, gcd(a,n) = 1},

that is, φ(n) is the number of positive integers less than n which are
coprime with n.

For prime p, φ(p) = p - 1. We define φ(1) = 1.
For a prime power pe, we have φ(pe) = pe-1(p -1).
The multiplicative property holds:

φ(m×n) = φ(m) × φ(n), for all m, n, gcd(m,n) = 1 .
Now Euler’s totient function can be computed for any integer using its

prime factorisation.
Example: φ(18) = φ(2×32) = φ(2)×φ(32)= (2-1)×(3-1)31= 6, that is, the

number of invertible (coprime with 18) numbers modulo 18 is equal
to 6. They are: 1, 5, 7, 11, 13, 17.

Euler’s Theorem

Euler’s Theorem: For any integers n and a such that a ≠0
and gcd(a,n) = 1 the following holds:

Fermat’s Theorem: For a prime p and any integer a such
that a ≠ 0 and a is not a multiple of p the following holds:

)(# and},1),gcd(,0|{ *
n

* nnanaan φ=Ζ=<<=Ζ

)(mod1)(na n ≡φ

)(mod11 pa p ≡−

Setting up the RSA
• Generate two different odd primes p and q

– Pick odd integers of suitable size and test for primality
• Compute n = pq and compute φ(n) = (p -1)(q -1)
• Select a public exponent e such that gcd(e, φ(n)) = 1
• Using Extended Euclidean Algorithm compute the

multiplicative inverse of e modulo φ(n) . Denote
d = e-1 mod φ(n) .

Public key: Kpub = (n,e)
Private key: Kpriv = (n,d)

(or Kpriv = (p,q,d). This is needed if private computations make
use of the CRT.)

n is called the RSA modulus; e is the public encryption
exponent; d is the private decryption exponent.

The Principle of Public Key Cryptosystems

Encryption operation is public
Decryption operation is private

Alice’s key for a public key cryptosystem is a pair:
(Kpub,Kpriv) where Kpub is public and Kpriv cannot be
used by anybody else than Alice.

anybody

encryption decryption

Alice

RSA encryption and decryption

Let M be a message, 0 ≤ M < n. Then

encryption of M is C = Me mod n
decryption of C is M = Cd mod n

This works, because (M e)d mod n = M.

Proof. (For M ∈): By Euler’s theorem,
. On the other hand,

It follows:

*
nΖ

)(mod1)(nM n ≡φ))((mod1 ned φ≡

)(mod)()()()(1 nMMMMMM knnkedde =⋅=== + φφ

Square and multiply
Fast exponentiation algorithms exist. The simplest one is the Square

and Multiply Algorithm. It has two versions: left-to-right or right-to-
left. Below we show the right-to-left (from the lsb to msb) version.

To compute

use the binary representation of the exponent d :

where are bits, i.e. equal to 0 or 1. Now

Compute the k powers:

and from of product (modulo n) of those powers ,
for which the corresponding di =1.

nad mod

1
1

2
210 222 −

−++⋅+⋅+= k
kddddd L

1210 ,,,, −kdddd K

)(mod)()()(1
1

2
2

10
1

1
2

210 222222 naaaaaa k
kk

k ddddddddd −
−−

− == ++⋅+⋅+ LL

)(mod;;;;;
13210 22222 naaaaaa

k−

= L

)(mod2 na
i

Security of RSA

• If factoring of n is easy, then φ(n) is easy to compute.
Given φ(n) and e, it is easy to compute the private
exponent d .

• But even if factoring is hard (as it is believed to be)
there may be some other ways to break RSA,
without factoring the modulus. But no such break is
known. All known breaks can be handled by proper
selection of parameters, and message formatting.

Generated set of a primitive element

Example: Finite field Z19

g = 2
g i mod 19, i = 0,1,2,…

Element g = 2 generates
all nonzero elements in Z19.
It is a primitive element.

i gi

0 1
1 2
2 4
3 8
4 16
5 13
6 7
7 14
8 9
9 18

i gi

10 17
11 15
12 11
13 3
14 6
15 12
16 5
17 10
18 1

Cyclic subgroups
F finite field, g ∈ F*, let <g> denote the set generated by g :

<g> = {1=g0, g1, g2,…, gr-1}, where r is the least positive
number such that gr = 1 in F. By Fermat’s and Euler’s
theorems r ≤ # F*= number of elements in F*.

Definition: r is the order of g.
<g> is a subgroup of the multiplicative group F* in F.
Axiom 1: gi · gj = g i+j ∈ <g>.
Axiom 2: associativity is inherited from F
Axiom 3: 1 = g0 ∈ <g>.
Axiom 4: Given gi ∈ <g> the multiplicative inverse is gr-i , as

g i · g r - i = g r - i · g i = g r = 1
<g> is called a cyclic group. The entire F* is a cyclic group

generated by a primitive element, e.g, Z19* = <2>.

Generated set of g

Example: Finite field Z19

g = 7
g i mod 19

The multiplicative order
of 7 is 3 in Z19.

i gi

0 1

1 7

2 49=11

3 77=1

4 7

5 11

… …

Example: Cyclic group in Galois Field
GF(24) with polynomial f(x) = x4 + x + 1

g = 0011= x +1
g2 = x2+1=0101
g3 = (x+1)(x2+1) = x3 + x2 + x + 1 = 1111
g4 = (x+1)(x3 + x2 + x + 1) = x4 + 1 = x = 0010
g5 = (x+1)(x4 + 1) = x5 + x4 + x + 1 = x2 + x = 0110
g6 = (x+1)(x2 + x) = x3 + x = 1010
g7 = (x+1)(x3 + x) = x4 + x3 + x2 + x = x3 + x2 +1= 1101
g8 = (x+1)(x3 + x2 +1) = x4 + x2 + x+1= x2 =0100
g9 = (x+1)x2 = x3 + x2 = 1100
g10 = (x+1)(x3 + x2) = x2 + x + 1= 0111
g11 = (x+1)(x2 + x +1) = x3 + 1 = 1001
g12 = (x+1)(x3 + 1) = x3 = 1000
g13 = (x+1)x3 = x3 + x + 1 = 1011
g14 = (x+1)(x3 + x + 1) = x3 + x2 + x = 1110
g15 = (x +1)(x3 + x2 + x) = 1 = 0001

Discrete logarithm

Given a ∈ <g> = {1,g1,g2,…,gr-1}, there is x, 0 ≤ x < r such
that a = gx. The exponent x is called the discrete
logarithm of a to the base g.

Example: Solve the equation

We find the solution using the table (slide 13): x =7.
Without the precomputed table the discrete logarithm is

often hard to solve. Cyclic groups, where the discrete
logarithm problem is hard, are used in cryptography.

19mod142 =x

Diffie-Hellman Key Exchange

ALICE BOB

a secret

A = ga mod p
b secret

B = gb mod p
A

B

K = Ba mod p K = Ab mod p

Man-in-the-Middle in the DH KE

Alice Carl
(man-in-the-middle) Bob

a

ga

K2= (gd)a

ga
gc1

b

gb

K1= (gc)b

gd

gb

c

gc

d

gd

K1= (gb)c

K2= (ga)d

Encryption using K2 Encryption using K1

Authentication function based on
asymmetric cryptography

Encryption operation is private
Decryption is a public operation

Alice’s key for a public key cryptosystem is a pair:
(Kpub, Kpriv) where Kpub is public and Kpriv cannot be
used by anybody else than Alice.

anybody

encryption decryption

Alice

Digital signatures

• Important primitive; the only one to provide non-repudiation.
• Slow, message are signed by applying the digital signature operation on a

fixed length hash of the message.
• Used for

– message authentication protocols
– non-repudiation protocols
– authentication and key agreement
– commitment schemes
– …

• RSA, ElGamal in different groups, Schnorr, DSA, Pairing based techniques

(Message , Private key) Signature

(Signature , Public key) Validity (1 bit)

Sender:

Receiver:

Authentication functions
• Authentication functions are cryptographic primitives which are used

by message authentication protocols between two parties, sender
and receiver. Sender attaches to the message an authenticator.
Receiver uses the authenticator to verify authenticity of the
message.

• Authentication functions:
– Message encryption (with integrity protection)
– Message authentication code (MAC function)
– Hash function
– Digital signature

• Note. Message encryption even with a block cipher does not provide
message integrity, see next slide.

Basic Authentication Techniques:
Message Freshness and Principal Liveness

Challenge-Response Mechanism

• Alice and Bob share a key K of an encryption algorithm.

• Alice has a message M, she wants to transmit to Bob.

• Bob wants verify the freshness of M and liveness of Alice

• It is necessary that the algorithm EK offers data-integrity. If
confidentiality is not needed then better to use a message
authentication algorithm.

Alice Bob

NB

E K{M, NB}

Non-integrity of CBC encryption
• Bob wants to verify the liveness of Alice’s love and receive a fresh new key
• Alice’s message M = W || “I love you” , where W is a128-bit key
• Encryption is CBC with 128-bit block cipher (AES)
• NB is a 128-bit value; (C1,C2, C3) = EK(NB,M)

AESK AESK

NB
text

C1 C2

• Malice changes the second ciphertext
block to C2’= C2 ⊕ Δ

• After decryption Bob reads
M’ = W’ || “I hate you”

where W’ is a random 128-bit value

text = 49 20 6c 6f 76 65 20 79 6f 75

Δ = 00 00 04 0e 02 00 00 00 00 00

text’= 49 20 68 61 74 65 20 79 6f 75

AESK

W

C3

The Use of Random Numbers

• Random numbers are an essential ingredient in most (if
not all) cryptographic protocols: there is no security
without apparent randomness and unpredictability;
things must look random to an external observer.

• Cryptographic keys
– symmetric keys
– (private) keys for asymmetric cryptosystems

• Cryptographic nonces (= numbers used once) to
guarantee freshness
– random numbers with some additional properties

Random and pseudorandom numbers

Random numbers are characterized using the following statistical
properties:

• Uniformity: Random numbers are uniformly distributed
• Independence: generated random numbers cannot be derived from

other generated random numbers
• Generated using physical devices, e.g, quantum random number

generator
Pseudorandom numbers are non-random numbers that cannot be

distinguished from random numbers:
• Statistical distribution of a sample of certain (large) size cannot be

distinguished from the uniform distribution
• Independent-looking: pseudorandom numbers should be

unpredictable: given a sequence of previously generated
pseudorandom numbers nothing cannot be said about the future
terms of the sequence

• Generated using deterministic algorithms from a short truly random or
pseudorandom seed.

Also known as Cyclic Encryption (Meyers 1982). It consists of a counter
with period N and an encryption algorithm with a secret key.

IV Initial value of the counter C
K Key of the block cipher encryption function EK

Xi i-th pseudorandom number output

C0 = IV;
Ci = Ci-1+1;
Xi = EK(Ci), i = 1,2,…

The period is N. If the length of the counter
is less than the block size of EK then all
generated numbers within one period are different.

Counter Mode PRNG

EK

Ci

Xi

• Cryptographically provably secure PRNG
• Very slow, output 1 pseudorandom bit per one modular

squaring modulo a large integer

p, q two different large primes; p = q = 3 (mod 4)
n modulus, n = pq
s secret seed; set x0= s2 mod n
xi i-th intermediate number
Bi i-th output bit

For i = 1,2,…
xi = (xi -1)2 mod n
Bi = xi mod 2

Blum-Blum-Shub

Distribution of shared symmetric keys for A and B; using one of the following
options:

1. Physically secured
• A selects or generates a key and delivers it to B using some physically

secure means
• A third party C selects a key and delivers it to A and B using some

physically secure means
2. Key distribution using symmetric techniques
• If A and B have a shared secret key, A can generate a new key and send

it to B encrypted using the old key
• If C is already using a shared secret key K1 with A and a second key K2

with B, then C can generate a key and send it encrypted to A and B.
3. Key management using asymmetric techniques
• If Party A has a public key of B, then A can generate a key and send it to

B encrypted using a public key
• If party C has the public key of A and the public key of B, it can generate a

key and send it to A and B encrypted using their public keys.

Distribution of symmetric keys

1. Master Keys
• long term secret keys
• used for authentication and session key set up
• Distributed using physical security or public key

infrastructure
2. Session Keys

• short term secret keys
• used for protection of the session data
• distributed under protection of master keys

3. Separated session keys
• short term secrets
• to achieve cryptographic separation: Different cryptographic

algorithms should use different keys. Weaknesses in one
algorithm should not endanger protection achieved by other
algorithms.

• derived from the main session key

Key Hierarchy

kk

3. k(A, TA,…), tktB = kB(k, A, times,…)

Example: Kerberos

A B

k

S

kA
kB

kA

kB

1. A, B, NA

2. kA(k, B, times, NA,…),
tktB = kB(k, A, times,…)

4. k(TA,…)

Prior enrollment with server
Timestamps to ensure freshness
Key transport
Key confirmation

k

Station-to-Station (STS) Protocol:
Authenticated Diffie-Hellman

• Provides perfect forward secrecy (PFS): compromise of long
term private keys does not compromise past session keys

• PFS requires the use of public key cryptography

Alice Bob

gx

IDb

CertA, EK(sigA(gx, gy))

gy, CertB, EK(sigB(gy, gx))

Distribution of Public Keys
• Public announcement

– Just appending one’s public key, or the fingerprint (hash) of
the public key in one’s signed email message is not secure

– PGP public key fingerprints need to be truly authenticated
based on face-to-face or voice contact

• Publicly available directory
– An authorized directory, similar to phone directory that is

published in print

• Public-key Authority
– Public keys obtained from an online service. Communication

needs to be secured.

• Public-key Certificates
– Public keys bound to user’s identities using a certificate

signed by a Certification Authority (CA)

CA and Registration Authority

Certification Authority
• E.g. in Finland: Population Register Center
• The certificate is stored in the subject’s Electronic Identity Card
Registration Authority
• Identifies the user based on user’s true identity and establishes a

binding between the public key and the subject’s identity
Management of private keys
• Private keys generated by the user
• Private key generated by a trusted authority
• Private key generated inside a smart card from where it is never

taken out. The public key is taken out.
Certificate Revocation List
• Black list for lost or stolen private keys
• CRL must be available online for certificates with long validity

period

Pretty Good Privacy
• Email encryption program
• Bottom–up approach to the distribution of trust
• Each user acts as his/her own CA and signs the public keys of other

users
• User can accept authenticity of a public key based on

recommendation by a third trusted user
• RSA public key encryption used for distribution of session keys *)
• Digital signatures produced by RSA or DSA signature algorithms
• Hash functions are MD5 and SHA-1
• Symmetric encryption performed using IDEA in CFB mode (self-

synchronising stream cipher)
• Public keys held in ”Key-ring”
• Revocation of public keys is a problem

*) A data encryption protocol, where the data is encrypted using symmetric
encryption, and the symmetric encryption key is encrypted using public key
encryption, is called as ”hybrid encryption”

	T-79.4501�Cryptography and Data Security
	Course Contents (1-6)
	Course Contents (7-12)
	Model for network security
	Threat model
	Computer and Communication Layers Security
	Example: GSM Security
	GSM Authentication
	Criticism
	Active Attack
	Lessons learnt
	Monoalphabetic substitution
	Relative Frequency of Letters in English
	Playfair Cipher
	Vigénère cipher: Kasiski’s method
	One Time Pad
	Primitives and protocols
	Different design approaches
	Man-made vs. Math-made
	Life Cycle of a Cryptographic Algorithm
	Block ciphers
	Birthday paradox
	Birthday paradox: Derivation
	Generic attack on block ciphers
	Stream ciphers
	Stream cipher encryption
	Stream ciphers: Security
	Polynomial Arithmetic
	Galois Field
	Extended Euclidean Algorithm for integers �and computing a modular inverse
	Extended Euclidean Algorithm: Example�gcd(595,408) = 17 = u×595 + v×408
	Extended Euclidean Algorithm for polynomials�Example
	Extended Euclidean Algorithm for polynomials�Example cont’d
	Example: Modulo 23 arithmetic compared to GF(23) arithmetic (multiplication).
	Multiplication tables
	Block ciphers, design principles
	DES encryption operation overview
	DES round function
	The F-function of DES
	The DES S-boxes
	IDEA encryption operation overview
	One round of IDEA: odd round
	One round of IDEA: even round
	The mangler function
	The Security of IDEA
	AES
	Rijndael - Inverse Structure
	Rijndael S-box Design View
	Mix Column - Implemented
	Mix Column - Design view
	The Security of AES
	Differential and linear cryptanalysis
	Differential and linear cryptanalysis
	Stream ciphers: Designs
	Synchronous stream cipher: encryption
	Linear Feedback Shift Register (LFSR)
	LFSR: Example
	LFSR statistical properties
	Autocorrelation function
	Golomb’s randomness postulates
	Example
	Combination generator
	RC4
	4.2 Block cipher confidentiality modes of operation
	ECB encryption
	Cipher Block Chaining (CBC) Mode: Encryption
	Counter Mode
	Triple DES (TDEA, 3DES)
	Meet in the Middle
	Meet in the Middle …
	Message authentication codes (MAC)
	CBC MAC
	Polynomial MAC
	Hash functions
	Hash functions
	Collision Attack
	Revised SHA Standard
	HMAC- hash based MAC
	HMAC algorithm
	Public key encryption
	Chinese Remainder Theorem (two moduli)
	Chinese Remainder Theorem (general case)
	Chinese Remainder Theorem: Example
	Euler’s Totient Function (n)
	Euler’s Theorem
	Setting up the RSA
	The Principle of Public Key Cryptosystems
	RSA encryption and decryption
	Square and multiply
	Security of RSA
	Generated set of a primitive element
	Cyclic subgroups
	Generated set of g
	Example: Cyclic group in Galois Field
	Discrete logarithm
	Diffie-Hellman Key Exchange
	Man-in-the-Middle in the DH KE
	Authentication function based on asymmetric cryptography
	Digital signatures
	Authentication functions
	Basic Authentication Techniques:�Message Freshness and Principal Liveness
	Non-integrity of CBC encryption
	The Use of Random Numbers
	Random and pseudorandom numbers
	
	
	
	
	Example: Kerberos
	Station-to-Station (STS) Protocol: Authenticated Diffie-Hellman
	Distribution of Public Keys
	CA and Registration Authority�
	Pretty Good Privacy�

