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T-79. 4501
Cryptography and Data Security

Lecture 7: RSA
-Public Key Principle 
-Setting up RSA
-Prime number generation  
-RSA encryption and decryption
-Square and multiply 
-Security of RSA

Stallings: Ch 9.1-2 

Lecture 6: Number Theory
-Prime numbers
-Chinese remainder theorem
-Euler’s totient function 
-Euler’s theorem
Stallings: Ch 8 
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Prime Numbers

Definition: An integer p > 1 is a prime if and only if its only positive
integer divisors are 1 and p.

Fact: Any integer a > 1 has a unique representation as a product of 
its prime divisors

ti e
t

ee
t

i

e
i ppppa L21

21
1

== ∏
=

where p1 < p2 < …< pt and each ei is a positive integer. 
Some first primes: 2,3,5,7,11,13,17,… For more primes, see: 

www.utm.edu/research/primes/

Example: Composite (non-prime) numbers and their factorisations:             
18 = 2·32,  27 = 33, 42 = 2·3·7, 84773093 = 8887·9539

http://www.utm.edu/research/primes/
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Euclidean Algorithm
Given two positive integers and their representations as products of prime

powers, it would be easy to extract from them the maximum set of 
common prime powers.

For example gcd(18, 42) = gcd( 2 · 32, 2 · 3 · 7) = 2 · 3 = 6.
On the other hand, given just one (composite) integer, its factorization is 

hard to compute (in general). 
Euclidean Algorithm is an efficient algorithm for finding the gcd of two 

integers. It is based on the following fact:
Let a > b. Then gcd(a,b) = gcd(a mod b, b).

Example: gcd(42, 18) = gcd(6, 18) = 6.
Example: gcd( 595,408) = gcd(187,408) = gcd(187,34) = gcd(17,34) = 17.
Slowest case: Fibonacci sequence 1, 2, 3, 5, 8,13, 21,…,Fn = Fn-1 + Fn-2. For 

example it takes 5 iterations to compute gcd(21,13); in general it takes 
n-2 iterations to compute gcd(Fn,Fn-1)
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Chinese Remainder Theorem (two moduli)

Problem: Assume m1 and m2 are coprime. Given x1 and x2, 
how to find 0 ≤ x < m1 m2 such that
x = x1 mod m1

x = x2 mod m2

Solution: Use the Extended Euclidean Algorithm to find
u and v such that u · m1 + v · m2 = 1. Then 

x = x ·(u · m1 +  v · m2 ) = x · u · m1 + x · v · m2

= (x2 + r · m2) · u · m1 + (x1 +  s · m1) · v · m2.
It follows that
x = x mod (m1 m2)= (x2 · u · m1 + x1 · v · m2 ) mod (m1 m2)
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Chinese Remainder Theorem (general case)
Theorem: Assume m1, m2, …,mt are mutually coprime. 

Denote M = m1 · m2 · … · mt . Given x1, x2, …,xt there exists
a unique x, 0 ≤ x < M, such that
x = x1 mod m1
x = x2 mod m2
…

x = xt mod mt

x can be computed as 

x = ( x1· u1 · M1 + x2 · u2 · M2 + …+ xt · ut · Mt ) mod M,

where Mi = (m1 · m2 · … · mt)/mi and ui = Mi
-1 (mod mi).

Proof: For the case t =2 see previous page. The general 
case is handled in T-79.5501.
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Chinese Remainder Theorem: Example

Let m1 = 7,  m2 = 11, m3 = 13. Then M = 1001.
Problem: Compute x, 0 ≤ x ≤ 1000 such that

x = 5 mod 7
x = 3 mod 11
x = 10 mod 13

Solution:
M1 = m2m3 = 143; M2 = m1m3 = 91; M3 = m1m2 = 77
u1 = M1

-1 mod m1 = 143-1 mod 7= 3-1 mod 7 = 5; similarly
u2 = M2

-1 mod m2 = 3-1 mod 11 = 4; u3 = (-1)-1 mod 13 = -1.
Then
x = ( 5 · 5 · 143 + 3 · 4 · 91 +10 ·(-1) · 77) mod 1001 = 894



7

Euler’s Totient Function φ(n)

Definition: Let n > 1 be integer. Then we set
φ(n) = #{ a | 0 < a < n, gcd(a,n) = 1},

that is, φ(n) is the number of positive integers less than n which are
coprime with n.

For prime p, φ(p) = p - 1. We define φ(1) = 1.
For a prime power pe, we have φ(pe) = pe-1(p -1).
The multiplicative property holds:

φ(m×n) = φ(m) × φ(n), for all m, n, gcd(m,n) = 1 .
Now Euler’s totient function can be computed for any integer using its

prime factorisation.
Example: φ(18) = φ(2×32) = φ(2)×φ(32)= (2-1)×(3-1)31= 6, that is, the 

number of invertible (coprime with 18) numbers modulo 18 is equal
to 6. They are: 1, 5, 7, 11, 13, 17.
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Euler’s Theorem

Euler’s Theorem: For any integers n and a such that a ≠0 
and gcd(a,n) = 1 the following holds:

Fermat’s Theorem: For a prime p and any integer a such 
that a ≠ 0 and a is not a multiple of p the following holds:
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Setting up the RSA

• Generate two different odd primes p and q
• Compute n = pq and  compute φ(n) = (p -1)(q -1)
• Select a public exponent e such that gcd(e, φ(n) )= 1
• Using Extended Euclidean Algorithm compute the 

multiplicative inverse of e modulo φ(n) . Denote         
d = e-1 mod φ(n) . 

Public key: Kpub = ( n,e )
Private key: Kpriv = (n,d) 

(or Kpriv = (p,q,d). This is needed if private computations make 
use of the CRT.)

n is called the RSA modulus; e is the public encryption 
exponent; d is the private decryption exponent.
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RSA encryption and decryption

Let M be a message, 0 ≤ M < n. Then

encryption of M is C = M e mod n
decryption of C is M = C d mod n

This works, because (M e)d mod n = M.

Proof. (For M ∈ ):  By Euler’s theorem,  
. On the other hand, 

It follows:
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The Principle of Public Key Cryptosystems

Encryption operation is public
Decryption operation is private

Alice’s key for a public key cryptosystem is a pair: 
(Kpub,Kpriv) where Kpub is public and Kpriv cannot be 
used by anybody else than Alice. 

anybody

encryption decryption

Alice
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Generating primes
Prime Number Theorem: Let

Then

Hence the probability that a randomly picked m-bit number is 
a prime is

and twice as large if only odd numbers are picked. The 
number is reasonably large (see exercise for an example). 

The primality of a random prime is tested using some 
primality test: Solovay-Strassen, Miller-Rabin,…, for a 
deterministic test (not yet practical) see: 
http://www.cse.iitk.ac.in/news/primality.html
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Miller-Rabin Primality test

1. Let n ≥ 3 be odd, consider the even number n -1, and write it as

2. Select a random integer a, 1< a < n -1.

3. If                             then return: n maybe a prime.

4. For j = 0 to k -1 do

5. if                                  then return: n may be a prime

6. Return: n is composite

For a given a the probability that a composite integer n passes the 
test in at most ¼. By repeating the test for a number of different 
base numbers a the probability of accepting a composite 
number as a prime can be made sufficiently small.

odd  with ,21 qqn k=−
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Square and multiply  
Fast exponentiation algorithms exist. The simplest one is the Square 

and Multiply Algorithm. It has two versions: left-to-right or right-to-
left. Below we show the right-to-left (from the lsb to msb) version.

To compute 

use the binary representation of the exponent d : 

where                                  are bits, i.e. equal to 0 or 1. Now

Compute the k powers:

and from of product (modulo n) of those powers                        ,               
for which the corresponding di =1.
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Using CRT 

• The private operation in RSA can be facilitated (for 
example, to fit small processors) by computing modulo p
and modulo q and then combining the results to get the 
result modulo pq. 

• Then the private key must contain the information about
p and q , that is, Kpriv = (p,q,d)
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Security of RSA

• If factoring of n is easy, then  φ(n) is easy to compute. 
Given φ(n) and e, it is easy to compute the private 
exponent d .

• But even if factoring is hard (as it is believed to be) 
there may be some other ways to break RSA, 
without factoring the modulus. But no such break is 
known. All known breaks can be handled by proper 
selection of parameters, and message formatting.
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