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T-79.4501
Cryptography and Data Security

Lecture 3:
Polynomial arithmetic

– Groups, rings and fields
– Polynomial arithmetic

Block ciphers
– DES
– IDEA
– AES 

Stallings: Chapters 3, 4.5, 5 
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Axioms: Group
Group (G,∗): A set G, with operation ∗.
Additive group: “∗” is addition + 
Multiplicative group: “∗” is multiplication ·

Axiom 1: G is closed under the operation ∗, that is, given a∈G and 
b∈G, then a∗b∈G.

Axiom 2: Operation ∗ is associative, that is, given a∈G, b∈G and 
c∈G, then (a∗b)∗c = a∗(b∗c).

Axiom 3: (G,∗) has an identity element, that is, an element e∈G such 
that  a∗e = e∗a = a, for all a∈G. Then e is denoted by 1 (general 
and multiplicative case), or by 0 (additive case)

Axiom 4: Every element has an inverse, that is, given a∈G there is a 
unique b∈G such that a∗b = b∗a = e. Then b is denoted by a-1

(general or multiplicative case) or  by –a (additive case).
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Axioms: Abelian Group

Axiom 5: Group (G,∗) is Abelian group (or commutative 
group) if the operation ∗ is commutative, that is, given 
a∈G and b∈G, then a∗b = b∗a. 
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Axioms: Ring (R,+,·)
A set R with two operations + and · is a ring if the following 

eight axioms hold:
A1: Axiom 1 for + 
A2: Axiom 2 for + 
A3: Axiom 3 for + 
A4: Axiom 4 for + 
A5: Axiom 5 for + 
M1: Axiom 1 for ·
M2: Axiom 2 for ·
M3: Distributive laws hold:  given a∈G,b∈G and c∈G,
then a·(b + c) = a·b + a·c and  (a + b)·c = a·c + b·c.

(R,+) is an Abelian Group
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Axioms: Commutative Ring and Field

A ring (R,+,·) is said to be commutative if 
M4: Axiom 5 for multiplication holds

A commutative ring (F,+,·) is a field if :

M5: Axiom 3 for · in F-{0} holds: a∗1 = 1∗a = a, for all a∈F, a≠0. 

M6: Axiom 4 for · in F-{0} holds: given a∈F, a≠0, there is a unique   
a-1∈F such that a∗ a-1 = a-1∗a = 1.

If (F,+,·) is a field, then F∗ = F-{0} with multiplication is a group. 

Example: p prime, then Zp ={a | 0 ≤ a < p} with modulo p addition

and multiplication is a field and (Zp
∗ , ·) is a group.
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Binary arithmetic:

There are exactly 10 types of people, those who
understand binary arithmetic and those who don’t.

(Doug Stinson’s home page)
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Polynomial Arithmetic

• Modular arithmetic with polynomials
• We limit to the case where polynomials have binary 

coefficients, that is, 1+1 = 0, and + is the same as -.
Example:

Computation                                means that everywhere
we take                            , for example, we can take  
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Galois Field

Given a binary polynomial f(x) of degree n, consider a set of binary 
polynomials with degree less than n. This set has 2n polynomials. 
With polynomial arithmetic modulo f(x) this set is a ring. 

Fact: If f(x) is irreducible, then this set with 2-ary (binary) polynomial 
arithmetic is a field denoted by GF(2n).

In particular, every nonzero polynomial has a multiplicative inverse 
modulo f(x). We can compute a multiplicative inverse of a 
polynomial using the Extended Euclidean Algorithm.

The next slide presents the Extended Euclidean Algorithm for 
integers. It works exactly the same way for polynomials.
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Extended Euclidean Algorithm for integers
and computing a modular inverse

Fact: Given two positive integers a and b there exist integers u and v such
that

u·a + v·b = gcd(a,b)
In particular, if gcd(a,b) =1, there exist positive integers u and v such that 

u·a = 1 (mod b), and v·b = 1 (mod a). 
The integers u and v can be computed using the Extended Euclidean
Algorithm, which iteratively finds integers ri , ui and vi such that  

r0 = b, r1 = a; u0 = 0, u1 = 1; v0 = 1, v1 = 0
and for i = 2,3,… we compute  qi such that

ri-2 = qi·ri-1 + ri , where 0 ≤ ri < ri-1 . 
We set:  ui = ui-2 - qi ·ui-1  and  vi = vi-2 - qi · vi-1. Then ri = ui ·a + vi ·b .

Let n be the index for which rn > 0 and rn+1 = 0. Then
rn = gcd(a,b) and un= u and vn= v. 
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Extended Euclidean Algorithm: Example
gcd(595,408) = 17 = u×595 + v×408

i qi ri ui vi

0 - 595 1 0

1 - 408 0 1

2 1 187 1 -1

3 2 34 -2 3

4 5 17 11 -16
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Extended Euclidean Algorithm: Examples

gcd(595,408) = 17 = 11×595 + (-16)×408 
= -397×595 + 579×408   

We get 11×595 = 17 (mod 408)
and 579×408  = 17 (mod 595)

If gcd(a,b) = 1, this algorithm gives modular inverses. 
Example: 557×797 = 1 (mod 1047) that is 

557 = 797-1 (mod 1047)
If gcd(a,b) = 1, the integers a and b are said to be coprime.
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Extended Euclidean Algorithm for polynomials
Example

i qi ri ui vi

0 x4 + x +1 0 1

1 x2 1 0

2 x2 x +1 x2 1

3 x x x3 +1 x

4 1 1 x3 + x2 +1 x +1

Example: Compute the multiplicative inverse of x2 modulo x4 +x+1
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Extended Euclidean Algorithm for polynomials
Example cont’d

So we get 

u4⋅x2 + v4⋅(x4 + x +1) = (x3 + x2 +1)x2 +(x +1)(x4 +x +1) = 1 = r4

from where the multiplicative inverse of x2 mod x4 + x +1
is equal to x3 + x2 +1. 

Motivation for polynomial arithmetic:

• uses all n-bit numbers (not just those less than some 
prime p)

• provides uniform distribution of the multiplication result 
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Example: Modulo 23 arithmetic compared to 
GF(23) arithmetic (multiplication).

In GF(2n) arithmetic, we identify polynomials of degree 
less than n:

with bit strings of length n :

and further with integers less than 2n: 

Example: In GF(23) arithmetic with polynomial x3 + x +1
(see next slide) we get:

4⋅3 = (100) ⋅(011) = x2⋅ (x+1)= x3 + x2 = (x+1) + x2 = x2 + x +1 
= (111) = 7
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Multiplication tables

1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 2 4 6 0 2 4 6
3 3 6 1 4 7 2 5
4 4 0 4 0 4 0 4
5 5 2 7 4 1 6 3
6 6 4 2 0 6 4 2
7 7 6 5 4 3 2 1

1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 2 4 6 3 1 7 6
3 3 6 5 7 4 1 2
4 4 3 7 6 2 5 1
5 5 1 4 2 7 3 6
6 6 7 1 5 3 2 4
7 7 5 2 1 6 4 3

modulo 8 arithmetic GF(23) Polynomial arithmetic
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Block ciphers
Confidentiality primitive
• Threat: recover the plaintext from the ciphertext without the 

knowledge of the key. 
• Security goal: protect against this threat.

Plaintext P: strings of bits of fixed length n
Ciphertext C: strings of bits of the same length n
Key K: string of bits of fixed length k
Encryption transformations: For each fixed key the encryption operation  

EK is one-to-one (invertible) function from the set of plaintexts to 
the set of ciphertext. That is, there exist an inverse transformation, 
decryption transformation DK such that for each P and K we 
have: DK ( EK (P ) ) = P
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Block ciphers, design principles
• The ultimate design goal of a block cipher is to use the 

secret key as efficiently as possible.
• Confusion and diffusion (Shannon) 
• New design criteria are being discovered as response 

to new attacks. 
• A state-of-the-art block cipher is constructed taking 

into account all known attacks and design principles. 
• But no such block cipher can become provably secure, 

it may remain open to some new, unforeseen attacks. 
• Common constructions with iterated round function

– Substitution permutation network (SPN)
– Feistel network
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DES Data Encryption Standard 1977 - 2002

• Standard for 25 years
• Finally found to be too small. DES key is only 56 bits, that is, there 

are about 1016 different keys. By manufacturing one million chips, 
such that, each chip can test one million keys in a second, then
one can find the key in about one minute. 

• The EFF DES Cracker built in 1998 can search for a key in about 
4,5 days. The cost of the machine is $250 000. 

• DES has greately contributed to the development of cryptologic
research on block ciphers.

• The design was a joint effort by NSA and IBM. The design 
principles were not published until little-by-little. The complete set 
of design criteria is still unknown.

• Differential cryptanalysis 1989
• Linear cryptanalysis 1993
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DES encryption operation overview
64-bit data input

Round 1

Round 2

Round 16

64-bit data output

Initial Permutation IP

Final Permutation IP-1

56-bit key

Generate 16 round keys

48-bit key

48-bit key

48-bit key

Decryption operation is  
identical, just the round
keys in reverse order
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DES round function
Round function is its own inverse (involution):

32-bit left half Lr 32-bit right half Rr

32-bit left half Lr+1 32-bit right half Rr+1

round key Kr

F function

Lr+1 = Rr

Rr+1 = Lr xor F(Rr, Kr)
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The F-function of DES
F(D;K) = P(S(E(D) xor K)

32-bit data D 48-bit key K

Expansion E

xor

48-bit input to S-boxes

32-bit data

Permutation P

S1 S2 S3 S4 S5 S6 S7 S8
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The DES S-boxes
• Small 6-to-4-bit functions
• Given in tables with four rows and 16 columns
• Input data     a1,a2,a3,a4,a5,a6
• The pair of bits a1,a6 point to a row in the S-box
• Given the row, the middle four bits point to a position from where 

the output data is taken. 
Example: S-box S4

• S-boxes are the only source of nonlinearity in DES. Their 
nonlinearity properties are extensively studied. 

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14
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IDEA encryption operation overview

64-bit data input

Round 1

Round 2

Round 17

64-bit data output

128-bit key

Key expansion to 52 16-bit keys
4 16-bit keys

2 16-bit keys

4 16-bit keys

Decryption operation is identical. 
The round keys are used in the 
reverse order and at the odd
rounds replaced by the inverse
values.  
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One round of IDEA: odd round

Xa (16 bits) Xd (16 bits)Xc (16 bits)Xb (16 bits)

Xd (16 bits)Xc (16 bits)Xb (16 bits)Xa (16 bits)

mult add add mult

Ka Kb Kc Kd

mult

add Addition modulo 216

Legend: Multiplication modulo 216 +1, where input 0 is 
replaced by 216, and result 216 is encoded as 0
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One round of IDEA: even round

Xa (16 bits) Xd (16 bits)Xc (16 bits)Xb (16 bits)

xor xor

xor xorxorxor

Xa (16 bits) Xd (16 bits)Xc (16 bits)Xb (16 bits)

KfKe
Mangler
function

This function is its own inverse!
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The mangler function

Yout = (Ke mult Yin) add Zin) mult Kf

Zout = (Ke mult Yin) add Yout

Yin Zin

Yout Zout

mult

mult

add

add
Ke

Kf
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The Security of IDEA

• IDEA has been around almost 15 years
• Designed by Xuejia Lai and Jim Massey
• Its only problem so far is its small block size
• Numerous analysis has been published, but nothing 

substantial
• It is not available in public domain, except for research 

purposes
• It is available under licence 
• It is widely used, e.g in PGP (see Lecture 11) 
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AES

AES
• Candidates due June 15, 1998: 21 submissions, 15 

met the criteria
• 5 finalists August 1999: MARS, RC6, Rijndael, 

Serpent, and Twofish,  (along with regrets for E2)
• October 3, 2000, NIST announces the winner:  

Rijndael
• FIPS 197, November 26, 2001

Federal Information Processing Standards 
Publication 197, ADVANCED ENCRYPTION 
STANDARD (AES)
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Rijndael - Internal Structure

Rijndael is an iterated block cipher with variable length block and 
variable key size. The number of rounds is defined by the table:

Nb = 4 Nb = 6 Nb = 8

Nk = 4 10 12 14

Nk = 6 12 12 14

Nk = 8 14 14          14

Nb = length of data block in 32-bit words

Nk = length of key in 32-bit words

AES
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Rijndael - Internal Structure
• First Initial Round Key Addition

• 9 rounds, numbered 1-9, each consisting of
Byte Substitution transformation
Shift Row transformation 
Mix Column transformation
Round Key Addition

• A final round (round 10) consisting of 
Byte Substitution transformation
Shift Row transformation 
Final Round Key Addition
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Rijndael - Inverse Structure
ENCRYPT DECRYPT INV ENCRYPT 

Initial Round Key Add Final Round Key Add Inv Initial Round Key Add

Byte Substitution Inv Shift Row Inv Byte Substitution 

Shift Row Inv Byte Substitution Inv Shift Row

Mix Column Round Key Addition Inv Mix Column 

Round Key Addition Inv Mix Column Inv Round Key Addition

… eight more rounds like this

Byte Substitution Inv Shift Row Inv Byte Substitution 

Shift Row Inv Byte Substitution Inv Shift Row

Final Round Key Add Initial Round Key Add Inv Final Round Key Add
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a0,0 a0,1 a0,2 a0,3 k0,0     k0,1         k0,2 k0,3

a1,0 a1,1 a1,2 a1,3 k1,0      k1,1         k1,2 k1,3

a2,0 a2,1 a2,2 a2,3 k2,0      k2,1          k2,2        k2,3

a3,0 a3,1 a3,2 a3,3 k3,0       k3,1         k3,2        k3,3

Rijndael-128 State and 
128 Cipher Key
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Byte Substitution

 a0,0  a0,1  a0,2  a0,3

 a1,0  a1,1  a1,2  a1,3

 a2,0  a2,1  a2,2  a2,3

 a3,0  a3,1  a3,2  a3,3

 b0,0  b0,1  b0,2  b0,3

 b1,0  b1,1  b1,2  b1,3

 b2,0  b2,1  b2,2  b2,3

 b3,0  b3,1  b3,2  b3,3

ai,j bi,j

S-box
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Rijndael S-box
Sbox[256] = {

99,124,119,123,242,107,111,197, 48,  1,103, 43,254,215,171,118,
202,130,201,125,250, 89, 71,240,173,212,162,175,156,164,114,192,
183,253,147, 38, 54, 63,247,204, 52,165,229,241,113,216, 49, 21,
4,199, 35,195, 24,150,  5,154,  7, 18,128,226,235, 39,178,117,
9,131, 44, 26, 27,110, 90,160, 82, 59,214,179, 41,227, 47,132,
83,209,  0,237, 32,252,177, 91,106,203,190, 57, 74, 76, 88,207,
208,239,170,251, 67, 77, 51,133, 69,249,  2,127, 80, 60,159,168,
81,163, 64,143,146,157, 56,245,188,182,218, 33, 16,255,243,210,
96,129, 79,220, 34, 42,144,136, 70,238,184, 20,222, 94, 11,219,
224, 50, 58, 10, 73,  6, 36, 92,194,211,172, 98,145,149,228,121,
231,200, 55,109,141,213, 78,169,108, 86,244,234,101,122,174,  8,
186,120, 37, 46, 28,166,180,198,232,221,116, 31, 75,189,139,138,
112, 62,181,102, 72,  3,246, 14, 97, 53, 87,185,134,193, 29,158,
225,248,152, 17,105,217,142,148,155, 30,135,233,206, 85, 40,223,
140,161,137, 13,191,230, 66,104, 65,153, 45, 15,176, 84,187, 22};
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Rijndael S-box Design View
Galois field GF(28) with polynomial 

m(x) =   x8 +  x4 +  x3 + x +  1
The Rijndael S-box is the composition  f ° g where Inv (f ° g ) =

g(x) = x -1 , x ∈ GF(28),  x ≠ 0, and g ° (Inv f)
g(0) = 0

and f is the affine transformation defined by y = f(x)

yo 1 0 0 0 1 1 1 1 x0 1
y1 1 1 0 0 0 1 1 1 x1 1
y2 1 1 1 0 0 0 1 1 x2 0
y3 1 1 1 1 0 0 0 1 x3 0
y4 1 1 1 1 1 0 0 0 x4 0
y5 0 1 1 1 1 1 0 0 x5 1
y6 0 0 1 1 1 1 1 0 x6 1
y7 0 0 0 1 1 1 1 1 x7 0

= +
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Shift Row

 a0,0  a0,1  a0,2  a0,3

 a1,0  a1,1  a1,2  a1,3

 a2,0  a2,1  a2,2  a2,3

 a3,0  a3,1  a3,2  a3,3

 a0,0  a0,1  a0,2  a0,3

 a1,1  a1,2  a1,3  a1,0

 a2,2  a2,3  a2,0  a2,1

 a3,3   a3,0  a3,1  a3,2

No shift

Cyclic left shift by 1

Cyclic left shift by 2

Cyclic left shift by 3
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Mix Column

 a0,0  a0,1  a0,2  a0,3

 a1,0  a1,1  a1,2  a1,3

 a2,0  a2,1  a2,2  a2,3

 a3,0  a3,1  a3,2  a3,3

 b0,0  b0,1  b0,2  b0,3

 b1,0  b1,1  b1,2  b1,3

 b2,0  b2,1  b2,2  b2,3

 b3,0  b3,1  b3,2  b3,3

Mix Column

a2,j

a3,j

a1,j

a0,j

b2,j

b3,j

b1,j

b0,j
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Mix Column - Implemented
The mix column transformation mixes one column of the 

state at a time. 

Column j:

b0,j = T2(a0,j) ⊕ T3(a1,j) ⊕ a2,j ⊕ a3,j
b1,j = a0,j ⊕ T2(a1,j) ⊕ T3(a2,j) ⊕ a3,j
b2,j = a0,j ⊕ a1,j ⊕ T2(a2,j) ⊕ T3(a3,j)
b3,j = T3(a0,j) ⊕ a1,j ⊕ a2,j ⊕ T2(a3,j)

where:

T2(a) = 2*a if  a < 128
T2(a) = (2*a) ⊕ 283 if  a ≥ 128
T3(a) = T2(a) ⊕ a.
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Mix Column - Design view
The columns of the State are considered as polynomials over GF(28).
They are multiplied by a fixed polynomial c(x) given by

c(x) = 03· x3 + 01· x2 + 01· x + 02
The product is reduced modulo x4 + 01.
Matrix form 

b0,j 02  03  01  01  a0,j
b1,j 01  02  03  01  a1,j
b2,j 01  01  02  03  a2,j
b3,j     03  01  01  02  a3,j

The Inverse Mix Column polynomial is  c(x)-1 mod ( x4 + 01) = d(x)     
given by

d(x) = 0B· x3 + 0D· x2 + 09· x + 0E

=
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Round Key Addition

 a0,0  a0,1  a0,2  a0,3

 a1,0  a1,1  a1,2  a1,3

 a2,0  a2,1  a2,2  a2,3

 a3,0  a3,1  a3,2  a3,3

 b0,0  b0,1  b0,2  b0,3

 b1,0  b1,1  b1,2  b1,3

 b2,0  b2,1  b2,2  b2,3

 b3,0  b3,1  b3,2  b3,3

rk0,0 rk0,1 rk0,2 rk0,3

rk1,0 rk1,1 rk1,2 rk1,3

rk2,0 rk2,1 rk2,2 rk2,3

rk3,0 rk3,1 rk3,2 rk3,3

⊕ =
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k0,0  k0,1  k0,2 k0,3
k1,0  k1,1  k1,2 k1,3
k2,0  k2,1  k2,2 k2,3
k3,0  k3,1  k3,2 k3,3

k0,0  k0,1  k0,2 k0,3
k1,0  k1,1  k1,2 k1,3
k2,0  k2,1  k2,2 k2,3
k3,0  k3,1  k3,2 k3,3

S-
boxes

round 
constant

(see Exercise 5.4)

Round Key Derivation

(128 bits)
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The Security of AES

• Designed to be resistant against differential and 
linear cryptanalysis

– S-boxes optimal 
– Wide Trail Strategy

• Has quite an amazing algebraic structure (see the 
next slide)

• Algebraic cryptanalysis tried but not yet (!) 
successful

• Algebraic cryptanalysis: given known plaintext –
ciphertext pairs construct algebraic systems of 
equations, and try to solve them.
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Algebraic equations from AES encryption

9,...,2,1,)))(((( )()()1( =⊕=+ rkxGFSMx rrr

)0()1( kpx ⊕=

)10()10( )))((( kxGFSc ⊕=

SM,
)(gG

where
are linear functions over )2( 8GF

= where

)2(,10,...,2,1,3,2,1,0,),( 8)()()( GFxrjixx r
ij

r
ij

r ∈===

)2(,10,...,2,1,0,3,2,1,0,),( 8)()()( GFkrjikk r
ij

r
ij

r ∈===
state

key

AES 
encryption:

0)0(,)(),2()2(: 188 ==→ − gxxgGFGFg

)( fF = 0λ−fwhere is additive over )2( 8GF

p plaintext block, c ciphertext block
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Differential and linear cryptanalysis

Differential cryptanalysis (Biham-Shamir 1990)
– Chosen plaintext attack
– A large number of pairs of plaintext blocks are

generated. Each pair of plaintext has a fixed
difference. Corresponding ciphertexts are computed
(using the encryption device with a fixed key as black
box). 

– Main idea: The statistics of the differences of the data 
blocks before the last round can be predicted. 

– Exhaustive search of the last round key are performed
by testing if decryptions with the candidate key of the 
ciphertext pairs gives results that match with the 
predicted statistics.   
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Differential and linear cryptanalysis

Linear cryptanalysis (Matsui 1993)
– Known plaintext attack
– A large number of plaintext blocks and their

corresponding ciphertexts are known. 
– Main idea: The statistics of a fixed linear combination

of the data bits before the last round can be predicted
by some fixed linear combination of the plaintext bits. 

– Exhaustive search of the last round key are performed
by testing if decryptions with the candidate key of the 
ciphertext blocks gives results that match with the 
predicted statistics.   
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