T-79.4501 Cryptography and Data Security 2006 / Homework 2 Wed 27.9 and Thu 28.9

1. Consider the DES S-box S_4

7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14

- (a) For the following 6-bit inputs: 000000, 010011, 101100, 111011, what are the corresponding outputs?
- (b) Show that the second row of S_4 can be obtained from the first row by means of the following mapping:

 $(y_1, y_2, y_3, y_4) \mapsto (y_2, y_1, y_4, y_3) \oplus (0, 1, 1, 0)$

- 2. Let us consider the mult operation in IDEA.
 - (a) Use the Extended Euclidean Algorithm to compute the inverse of 357 with respect to mult.
 - (b) What is the inverse of **0** with respect to mult?
- 3. The Mangler function of IDEA takes two 16-bit data inputs Y_{in} and Z_{in} and it produces two 16-bit outputs Y_{out} and Z_{out} , and it is controlled by two 16-bit keys Ke and Ke (see Lecture 3). Compute the outputs with the following keys and inputs:
 - (a) Ke = Kf = 1024 and $Y_{in} = Z_{in} = 64$
 - (b) $Ke = Z_{in} = 512$ and $Kf = Y_{in} = 128$
- 4. Show that the even round of IDEA with any given round keys Ke and Kf is its own inverse.
- 5. In the round key expansion procedure Rijndael makes use of eight-bit constants C_i , i = 1, 2, 3, ..., 30 that can be computed as

$$C_i = 2^{i-1}$$

in polynomial arithmetic modulo $m(x) = x^8 + x^4 + x^3 + x + 1$. For example, $C_1 = 00000001$, $C_2 = 2 = 00000010$, etc. Compute C_{11} , C_{12} and C_{13} .