T-79.4301 Spring 2008

Parallel and Distributed Systems Tutorial 8 - Mon Apr 28, 14:15

- 1. Find Kripke models M_a , M_b , M_c and M_d (with $AP = \{p, q\}$) such that
 - a) $M_a \models \mathbf{G} p$ and $M_a \models \mathbf{G} (p \Rightarrow q)$
 - b) $M_b \not\models \mathbf{G} p$ and $M_b \models \mathbf{G} (p \vee \mathbf{Y} q)$
 - c) $M_c \models \mathbf{G}(p \Rightarrow (q \mathbf{S} \neg p))$ and $M_c \models \mathbf{G}(p \Rightarrow \mathbf{Y} \mathbf{Y} \neg p)$
 - d) $M_d \not\models \mathbf{G}(p \mathbf{S} q)$ and $M_d \models \mathbf{G} \mathbf{O} q$

(For two formulas ψ_1, ψ_2 , a finite word $\pi = x_0 x_1 x_2 \dots x_n \in (2^{AP})^*$, and an index $0 \le i \le n$, $\pi^i \models \psi_1 \Rightarrow \psi_2$ holds iff $\pi^i \models (\neg \psi_1) \lor \psi_2$.)

- 2. Let $\varphi = \mathbf{G}(alarm \Rightarrow \mathbf{O}(crash))$ be a past safety formula over the atomic propositions $AP = \{alarm, crash\}$. Give a deterministic finite state automaton $\overline{\mathcal{S}}$ (over the alphabet 2^{AP}) which accepts the finite words that are counterexamples to the formula φ .
- 3. Demo exercise: Model the automaton $\overline{\mathcal{S}}$ in Promela by (mis-)using the never claim construction to observe the global bool variables alarm and crash, and to execute the Promela statement assert(false) when the automaton $\overline{\mathcal{S}}$ would accept the sequence observed so far.