Parallel and Distributed Systems

Tutorial 7 - Solutions

1. a) Assume that $L_{1} \sim L_{2}$ holds, i.e., that there exists a bisimulation $B \subseteq$ $\left\{s_{0}, s_{1}, s_{2}, s_{3}, s_{4}\right\} \times\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}$ such that $\left(s_{0}, t_{0}\right) \in B$ holds.
Because $\left(s_{0}, t_{0}\right) \in B$ and $s_{0} \xrightarrow{a} s_{1}$ hold, then, because B is a bisimulation, there exists a state $t \in\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}$ such that $t_{0} \xrightarrow{a} t$ and $\left(s_{1}, t\right) \in B$ hold. It follows that $\left(s_{1}, t_{1}\right) \in B$.
Similarly, because $\left(s_{1}, t_{1}\right) \in B$ and $t_{1} \xrightarrow{c} t_{3}$ hold, there exists a state $s \in\left\{s_{0}, s_{1}, s_{2}, s_{3}, s_{4}\right\}$ such that $s_{1} \xrightarrow{c} s$ and $\left(s, t_{3}\right) \in B$ hold. This is, however, a contradiction, because there is no such state s in the LTS L_{1}. Therefore our assumption that there exists a bisimulation B between L_{1} and $L_{2}\left(\right.$ with $\left.\left(s_{0}, t_{0}\right) \in B\right)$ is incorrect, and thus $L_{1} \nsim L_{2}$.
b) Assume that $L_{3} \sim L_{4}$ holds, i.e., that there exists a bisimulation $B \subseteq$ $\left\{s_{0}, s_{1}, s_{2}\right\} \times\left\{t_{0}, t_{1}\right\}$ such that $\left(s_{0}, t_{0}\right) \in B$ holds.
Because $\left(s_{0}, t_{0}\right) \in B$ and $s_{0} \xrightarrow{\tau} s_{1}$ hold, then, because B is a bisimulation, there exists a state $t \in\left\{t_{0}, t_{1}\right\}$ such that $t_{0} \xrightarrow{\tau} t$ and $\left(s_{1}, t\right) \in B$ hold. It follows that $\left(s_{1}, t_{1}\right) \in B$.
Because $\left(s_{1}, t_{1}\right) \in B$ and $s_{1} \xrightarrow{\tau} s_{2}$ hold, then, because B is a bisimulation, there exists a state $t \in\left\{t_{0}, t_{1}\right\}$ such that $t_{1} \xrightarrow{\tau} t$ and $\left(s_{2}, t\right) \in B$ hold. This is again a contradiction, and therefore $L_{3} \nsim L_{4}$.
c) The relation $B=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{0}\right)\right\}$ is a bisimulation such that $\left(s_{0}, t_{0}\right) \in$ B holds. Therefore $L_{5} \sim L_{6}$ holds.
d) The relation

$$
B=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right),\left(s_{2}, t_{3}\right),\left(s_{3}, t_{2}\right),\left(s_{3}, t_{3}\right),\left(s_{4}, t_{2}\right)\right\}
$$

is a bisimulation such that $\left(s_{0}, t_{0}\right) \in B$ holds. Therefore $L_{7} \sim L_{8}$ holds.
2.

$L \leq_{\text {sim }} L^{\prime}$: The relation $R=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{0}\right)\right\}$ is a simulation relation between L and L^{\prime} that contains the pair $\left(s_{0}, t_{0}\right)$.
$L^{\prime} \leq_{\text {sim }} L$: The relation $R^{\prime}=\left\{\left(t_{0}, s_{0}\right)\right\}$ is a simulation relation between L^{\prime} and L that contains the pair $\left(t_{0}, s_{0}\right)$.
Assume that $L \sim L^{\prime}$ holds, i.e., that there exists a bisimulation $B \subseteq$ $\left\{s_{0}, s_{1}\right\} \times\left\{t_{0}\right\}$ such that $\left(s_{0}, t_{0}\right) \in B$ holds.
Because $\left(s_{0}, t_{0}\right) \in B$ and $s_{0} \xrightarrow{a} s_{1}$ hold, then, because B is a bisimulation, there exists a state $t \in\left\{t_{0}\right\}$ such that $t_{0} \xrightarrow{a} t$ and $\left(s_{1}, t\right) \in B$ hold. It follows that $\left(s_{1}, t_{0}\right) \in B$.
Similarly, because $\left(s_{1}, t_{0}\right) \in B$ and $t_{0} \xrightarrow{a} t_{0}$ hold, there exists a state $s \in\left\{s_{0}, s_{1}\right\}$ such that $s_{1} \xrightarrow{a} s$ and $\left(s, t_{0}\right) \in B$ holds. This is, however, a contradiction, because there is no such state s in the LTS L. Therefore the LTSs L and L^{\prime} are not bisimilar, and thus $L \nsim L^{\prime}$.
3.

Because $\operatorname{traces}(L)=\{\varepsilon\} \subseteq\{\varepsilon, a\}=\operatorname{traces}\left(L^{\prime}\right), L \leq_{t r} L^{\prime}$ holds.
Assume that $L \leq_{\text {sim }} L^{\prime}$ holds, i.e., that there exists a simulation $R \subseteq$ $\left\{s_{0}, s_{1}\right\} \times\left\{t_{0}, t_{1}\right\}$ such that $\left(s_{0}, t_{0}\right) \in R$ holds.
Because $\left(s_{0}, t_{0}\right) \in R$ and $s_{0} \xrightarrow{\tau} s_{1}$ hold, then, because R is a simulation, there exists a state $t \in\left\{t_{0}, t_{1}\right\}$ such that $t_{0} \xrightarrow{\tau} t$ and $\left(s_{1}, t\right) \in R$ hold. This is a contradiction, because there is no such state in L^{\prime}, and thus $L \not$ sim $_{\text {sim }} L^{\prime}$.

