
T–79.4301 Parallel and
Distributed Systems (4 ECTS)

T–79.4301 Rinnakkaiset ja hajautetut järjestelmät (4 op)

Lecture 9
7th of April 2008

Keijo Heljanko
Keijo.Heljanko@tkk.fi

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 1/28

Liveness

Liveness properties are properties of systems that
are characterised by the intuitive formulation:
“eventually something good happens”.

Another intuition is the following: For finite state
systems all counterexamples demonstrating that a
liveness property does not hold are of the form

s0 p
−→ s′

l
−→ s′, where l is a non-empty execution of the

system starting from state s′ and ending in state s′,
an “nothing good” happens in l .

Thus, intuitively, liveness properties specify what
kinds of loops in the system behavior are allowed for
correct implementations.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 2/28

Liveness - Examples

All executions of the system will pass through a state
where init_done holds. (An eventuality property.)

If a data request is sent to a server, the server will
always eventually reply with the data. (A progress
property: “always eventually” here means “after and
arbitrary long but nevetheless a finite number of time
steps”.)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 3/28

Liveness - Examples (cnt.)

Both process 0 and process 1 are scheduled
infinitely often.

If both process 0 and process 1 are scheduled
infinitely often then the request of process 0 to enter
the critical section will always eventually be followed
by process 0 entering the critical section. (This is
often called model checking under fairness. Namely,
if the assumption about fair scheduling holds, then
the systems satisfies the required progress property.)

If process 0 is in the critical section, it will leave the
critical section after an unbounded but finite number
of time steps.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 4/28

Liveness

A practical way of specifying liveness properties is to
use the temporal logic LTL (linear temporal logic), or
its extension PLTL (linear temporal logic with past).

In LTL we use operators like:
Xψ1 (“next”), the future time correspondent to
Yψ1, and
ψ1 U ψ2 (“until”), the future time correspondent to
ψ1 S ψ2.

The semantics of LTL is outside the scope of this
course.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 5/28

Liveness (cnt.)

How to specify liveness properties in LTL and how to
implement their model checking is covered in the
course: T–79.5301 Reactive Systems
http://www.tcs.hut.fi/Studies/T-79.5301/

Spin has a full blown LTL model checker (as actually
most model checkers do these days), so the tool
support is available.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 6/28

http://www.tcs.hut.fi/Studies/T-79.5301/

Model Based Testing

Suppose you have verified safety properties of your
system implementation G using model checking
methods, and you want to implement it as a concrete
program P.

Can we use automated testing to increase our
confidence that P satisfies all safety properties
proved from the “golden design” model G?

The answer is yes. The approach presented for
doing so is called model based testing (MBT).

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 7/28

Simplified Testing Framework

To keep things simple we add a couple of restrictions
needed to keep our intro to MBT short. We also keep the
discussion a bit informal.

Assume G is an LTS with alphabet Σ divided into
inputs ΣI and outputs ΣO.

Let both G and P behave in an input-internal-output
loop for each test step i as follows:
1. Wait for an input ai ∈ ΣI , all inputs are accepted

and acted on.
2. Do some finite sequence of internal τ-moves.

(Non-determinism allowed!)
3. Send an output bi ∈ ΣO.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 8/28

Simplified Testing Framework

Because of the assumptions above, any sequence
a = a0a1 . . .an ∈ Σ∗

I is a valid input test sequence for
both G and P.

Now feed the test sequence to P. It produces the
output sequence b = b0b1 . . .bn ∈ Σ∗

O.

If a0b0a1b1 . . .anbn 6∈ traces(G) the test verdict is fail,
otherwise pass.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 9/28

Test Verdict Computation

Intuitively, if a0b0a1b1 . . .anbn 6∈ traces(G), then the
concrete program P can after some prefix
a0b0a1b1al with l ≤ n do bl , and this cannot be
matched by any execution of the golden design G.

However, in this case P might also violate the safety
properties proved for G, and therefore we’d better
give a fail test verdict.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 10/28

Test Verdict Computation (cnt.)

To check whether a0b0a1b1 . . .anbn 6∈ traces(G), we
can see a0b0a1b1 . . .anbn as an LTS A, and G as the
specification LTS, and then check A≤tr G. If A≤tr G
we give test verdict pass, otherwise fail.

As you may recall, checking A≤tr G usually involves
determinising G.

Thus if G has |G| states, the determinised version

can have exponentially more states, namely 2|G|.

By employing the so called on-the-fly determinisation
technique, the memory needed to check A≤tr G can
be bounded by the number of states |G|.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 11/28

Model Based Testing

The first commercial model based testing tools have
become available.

For example, the testing tools by Conformiq
(http://www.conformiq.com/) contain automated test
generation and execution with MBT techniques.
For more on model based testing, see the
course: T–79.5304 Formal Conformance Testing
http://www.tcs.hut.fi/Studies/T-79.5304/

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 12/28

http://www.conformiq.com/
http://www.tcs.hut.fi/Studies/T-79.5304/

Other models of Concurrency

Process algebras - An algebraic way of compactly
specifying LTSs. Example specifying two
synchronizing LTSs:
I = ((a.(τ.c.0+b.0))

f
(a.b.0)), where “

f
” is parallel

composition, “.” is sequential composition, “+” in
non-deterministic choice, and “0” is a deadlocking
process. Lots of variants exist, the most well know
are CCS and CSP.

Petri nets - A model of concurrency developed by
C.A. Petri in 1962. Also lots of variants exist.

Extended finite state machines, SMV programs
(input language of the NuSMV model checker), . . .

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 13/28

Petri nets

For another perspective into models of concurrency,
consider Petri nets. The class we use are called
place/transition nets (P/T-nets). A P/T-net is a tuple
N = (P,T,F,W,M0), where

P is a finite set of places,

T is a finite set of transitions,

F ⊆ (P×T)∪ (T ×P) is the flow relation,

W : F 7→ N\{0} is the arc weight mapping, and

M0 : P 7→ N is the initial marking.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 14/28

Running Example

Recall the synchronization of LTSs from Lecture 6:

r2

r0

a τ

τ

L2 :

r1

s0

L1 : Σ1 = {a} Σ2 = {a}

s2

a

τ

s1

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 15/28

Running Example as P/T net

s0 r0

s1 r2

t1 t2

t3 t4

s2 r1

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 16/28

The running Example

Places P = {s0,s1,s2, r0, r1, r2}.

Transitions T = {t1, t2, t3, t4}.

Flow relation F = {(s0, t1),(t1,s1),(r0, t2),(t2, r2),
(s1, t3),(r0, t3),(t3,s2),(t3, r1), (r2, t4),(t4, r2)}.

Arc weight mapping W(x,y) = 1 for all (x,y) ∈ F .
We use the convention that only arcs weights
W(x,y) > 1 are drawn next to the arc (x,y), i.e., the
default arc weight is 1.

Initial marking M0 = {s0 7→ 1, s1 7→ 0, s2 7→ 0,

r0 7→ 1, r1 7→ 0, r2 7→ 0}.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 17/28

From LTSs to P/T-nets

Intuition behind the mapping:

Local states of the components are mapped to
places.

Transitions of the Petri net consist of all legal ways of
synchronizing the local transitions of the
components. (Potential size blow-up here!)

The flow relation records what is the precondition
under which the synchronization can happen, and
what is the effect of the synchronization on the state
of each component.

The initial marking records the initial state of the
components.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 18/28

From LTSs to P/T-nets

Given L = L1
f

L2
f
· · ·

f
Ln with Li = (Σi,Si,S0

i ,∆i),
we get a P/T-net NL as follows:

P = S1∪S2∪·· ·∪Sn,

T ⊆ ∆1∪{−}×∆2∪{−}×·· ·×∆n∪{−}
(to be defined on the next slide),

F is the smallest relation satisfying for every
(P/T-net) transition g∈ T:

For all 1≤ i ≤ n, t j = (p, l , p′) ∈ ∆i : If
g = (. . . , t j , . . .) then (p,g) ∈ F and (g, p′) ∈ F .

M0(p) = 1 if p∈ S0
1∪S0

2∪·· ·∪S0
n, and M0(p) = 0

otherwise.
T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 19/28

From LTSs to P/T-nets (cnt.)

For all x∈ Σ∪{τ} and all
g∈ ∆1∪{−}×∆2∪{−}×·· ·×∆n∪{−} the
(P/T-net) transition g = (t1, t2, . . . , tn) ∈ T iff:

x = τ: there is 1≤ i ≤ n such that
ti = (si,τ,s′i) ∈ ∆i and
t j = − for all 1≤ j ≤ n, when j 6= i.
x 6= τ: for every 1≤ i ≤ n:
ti = (si,x,s′i) ∈ ∆i , when x∈ Σi and
ti = −, when x 6∈ Σi .

Finally we define W(x,y) = 1 for all (x,y) ∈ F .

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 20/28

From LTSs to P/T-nets (cnt.)

We now claim that reachability graphs of
L = L1

f
L2

f
· · ·

f
Ln and NL are the same.

However, to do so we have to define the behavior of
P/T-nets.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 21/28

Behavior of P/T-nets

The state of a P/T-net consist of a marking
M : P 7→ N, which tells for each place how many
tokens (drawn as black dots) it contains.

The notation M(p) denotes the number of tokens in
place p.

In our running example M(p) ≤ 1 for all places
p∈ P, i.e., each place contains at most one token.
However, this is not required in general.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 22/28

Behavior of P/T-nets

The preset of a node x∈ P∪T is denoted by •x and
defined to be: •x = {y∈ P∪T | (y,x) ∈ F}.
The preset of a node consist of those nodes from
which an arc to x exist. In our running example
•t3 = {s1, r0}.

The postset of a node x∈ P∪T is denoted by x•

and defined to be: x• = {y∈ P∪T | (x,y) ∈ F}.
The postset of a node consist of those nodes to
which an arc from x exist. In our running example
t3• = {s2, r1}.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 23/28

Enabling of transitions

To simplify definitions, we extend W(x,y) to all pairs
(x,y) ∈ (P∪T)× (T ∪P) as follows: if (x,y) 6∈ F
then W(x,y) = 0.

A transition t ∈ T is enabled in marking M, denoted
t ∈ enabled(M), iff for all p∈ P : M(p) ≥W(p, t).
(All places p which are in the preset of t contain at
least the number of tokens specified by W(p, t).)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 24/28

Firing of transitions

The marking M′ reached after firing t, denoted
M′ = fire(M, t), is defined for all p∈ P as:
M′(p) = M(p)−W(p, t)+W(t, p).
(First remove as many tokens as given by W(p, t)
from all places in the preset of t, and then add as
many tokens for all places in the postset of t as
denoted by W(t, p).)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 25/28

Reachability graph

Analogous to the similar definition for LTSs (from end of
Lecture 5): Reachability graph G = (V,E,M0) is the
graph with the smallest sets of nodes V and edges E
such that:

M0 ∈V, where M0 is the initial marking of the net N,
and

if M ∈V then for all t ∈ enabled(M) it holds that
M′ = fire(M, t) ∈V and (M, t,M′) ∈ E.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 26/28

Reachability graph (cnt.)

It is easy to define a P/T-net with an infinite
reachability graph.

A place p∈ P is defined to be k-bounded iff for all
reachable markings M ∈V it holds that M(p) ≤ k.

A net is defined to be k-bounded if all its places are
k-bounded

A net is defined to be unbounded (i.e., infinite state)
iff it is not k-bounded for any k∈ N.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 27/28

P/T-nets and Turing machines

It is not possible to simulate a Turing machine with a
P/T-net. Asking whether a marking M is reachable is
in fact decidable for P/T-nets (even with infinite
reachability graphs).

The algorithms used are quite involved, and we do
not know of an implementation of the theoretical
result in question.

There is a simple (but slow in the worst case)
algorithm which can compute which places of the net
are unbounded, called the coverability graph
algorithm.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 28/28

	Liveness
	Liveness - Examples
	Liveness - Examples (cnt.)
	Liveness
	Liveness (cnt.)
	Model Based Testing
	Simplified Testing Framework
	Simplified Testing Framework
	Test Verdict Computation
	Test Verdict Computation (cnt.)
	Model Based Testing
	Other models of Concurrency
	Petri nets
	Running Example
	Running Example as P/T net
	The running Example
	From LTSs to P/T-nets
	From LTSs to P/T-nets
	From LTSs to P/T-nets (cnt.)
	From LTSs to P/T-nets (cnt.)
	Behavior of P/T-nets
	Behavior of P/T-nets
	Enabling of transitions
	Firing of transitions
	Reachability graph
	Reachability graph (cnt.)
	P/T-nets and Turing machines

