
T–79.4301 Parallel and
Distributed Systems (4 ECTS)

T–79.4301 Rinnakkaiset ja hajautetut järjestelmät (4 op)

Lecture 7
3rd of March 2008

Keijo Heljanko
Keijo.Heljanko@tkk.fi

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 1/25

Abstraction with Traces

Quite often we do not have resources to directly
check that I ≤tr S, because the parallel composition
I = L1

f
L2

f
· · ·

f
Ln is just too big to handle.

We can often discard unnecessary detail from the
implementation by creating some component L′

i such
that Li ≤tr L′

i.

Now if Li ≤tr L′
i then it can be proved that also

I ≤tr I′, where I′ is I with the component Li replaced
with L′

i.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 2/25

Abstraction (cnt.)

Now clearly, if I′ ≤tr S then also I ≤tr S.

Thus when using trace containment as the way of
checking properties, any component of the
implementation can be replaced with another one
provided that the new component “has more
behavior” than the original.

Hopefully the new component is smaller than the
original one, leading to hopefully small I′.

This is called abstraction: leaving out unnecessary
detail by, e.g., replacing data dependent if-then-else
constructs of the modelling language with purely
non-deterministic choice.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 3/25

Abstraction (cnt.)

Examples of abstraction in LTSs preserving traces:

Some component Li might be removed altogether by
replacing it with the one-state component L′

i, such
that traces(L′

i) = Σ∗.

Sequences of τ-transitions can be compressed away
in many cases, as long as their firing cannot be
indirectly observed in the traces of the component.

In the LTS domain in particular, it is always safe to
add arcs to LTSs as doing so can only increase the
set of traces of the component.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 4/25

Abstraction (warning)

Note: The set of allowed abstractions depends on
the fact that we are using trace containment to check
properties!

A completely different set of allowed abstractions
applies if we were, e.g., checking the implementation
for deadlock freedom.

Thus the set of modelling abstractions that are sound
depends very closely on the properties that need to
be verified from the model!

Trace containment allows for more freedom in
choosing the right abstraction than most other
preorders.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 5/25

Abstraction for Deadlock Detection

We will be less formal here, just a word of warning:

Intuitively all changes of the implementation I are
allowed which might make the modified version I′

more “deadlock prone” than I.

In particular, adding edges can sometimes make
new deadlocks to be reachable. However, adding
edges might also mean escaping from deadlocks of
a component.

Removing edges can also similarly either add or
remove deadlocks.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 6/25

Abstraction for Deadlock Detection

A sound but non-optimal solution for preserving
deadlocks is to use methods based on bisimulation
equivalence (see next slide).

Better solutions are also available but the details are
beyond the scope of this course.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 7/25

Bisimulation

Bisimulation (also often called strong bisimulation) is
one of the most widely used behavioral equivalences
for LTSs.

It is one of the strongest equivalences around:
Replacing a component Li in a parallel composition I
with a bisimulation equivalent component L′

i
(denoted L′

i ∼ Li) will result in a parallel composition
I′ such that I′ ∼ I, and will leave all interesting
properties of I to be directly verified from I′.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 8/25

Bisimulation (cnt.)

In practice a component Li can always be replaced
by a component L′

i for which Li ∼ L′
i holds. There is

also a (reasonably) efficient algorithm to obtain such
an L′

i with the minimum number of states.

Properties preserved by bisimulation include traces,
deadlocks, livelocks, and all properties expressible
by all commonly used specification languages
(for example the temporal logics LTL and CTL).

Because bisimulation preserves so many properties,
the changes to the component LTSs preserving
bisimulation equivalence are significantly more
limited than those preserving trace equivalence.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 9/25

Bisimulation Definition

Given a pair of LTSs L = (Σ,S,{s0},∆) and

L′ = (Σ,S′,{s0′},∆′), a relation B ⊆ S×S′ is a
bisimulation iff:

For every state pair (s, t) such that B(s, t):

If s
x
−→ s′ for some s′ ∈ S,x ∈ Σ∪{τ} then there is

some t ′ ∈ S′ such that t
x
−→ t ′ and B(s′, t ′); and

If t
x
−→ t ′ for some t ′ ∈ S′,x ∈ Σ∪{τ} then there is

some s′ ∈ S such that s
x
−→ s′ and B(s′, t ′).

L ∼ L′ iff there is some bisimulation B such that B(s0
,s0′).

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 10/25

Bisimulation Notes

If L ∼ L′ then the two LTSs are bisimilar.

There can be several relations B1, B2, . . . etc. such
that L and L′ are bisimilar.

One can prove that the union of any two bisimulation
relations is a bisimulation. The bisimulation B∼ is the
largest relation which is still a bisimulation. In other
words Bi ⊆ B∼ for all the other bisimulation relations
Bi.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 11/25

Bisimulation Notes (cnt.)

Bisimulation is

reflexive: L ∼ L,

symmetric: if L ∼ L′ then L′ ∼ L, and

transitive: if L ∼ L′ and L′ ∼ L′′ then L ∼ L′′.

Thus bisimulation is an equivalence relation.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 12/25

Bisimulation Algorithms

There are reasonably efficient (low-order polynomial
in LTS size) algorithms to check two structures for
bisimulation equivalence. The algorithmic ideas used
are similar to DFA minimization algorithms.
(A straightforward implementation runs in time
O(|S| · (|S|+ |∆|))).
The same algorithm can be used for creating the LTS
with the minimal number of states that is bisimilar to
the LTS given as input.

Quite often the bisimulation minimization algorithm is
used as a preprocessing step before parallel
composition.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 13/25

Bisimulation and Other Equivalences

There are literally hundreds of equivalences (and
preorders) used and almost all of them are weaker
than bisimulation and stronger than the trace
equivalence.

For example, the fact that the LTS consisting of a
sequence of two τ-transitions is not strongly bisimilar
to the LTS consisting of one τ-transition is already
quite severe restriction speaking against strong
bisimulation.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 14/25

Bisimulation (recap)

To reformulate:

Bisimulation makes very few LTSs equivalent which
is bad for flexibility of use in abstraction. However, it
preserves almost all interesting properties of the
system at hand. In addition, the algorithms,
especially minimization wrt. bisimulation, are cheap.

Trace equivalence makes a large number of LTSs
equivalent, which is good for the increased flexibility
of abstraction. However, it loses several interesting
properties of systems such as deadlocks and
livelocks. Checking and minimizing (in the few cases
it is possible) wrt. trace equivalence are expensive.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 15/25

Simulation

Closely related to bisimulation is of course the simulation
preorder ≤sim:

Given LTSs L = (Σ,S,{s0},∆) and L′ = (Σ,S′,{s0′},∆′),
a relation R ⊆ S×S′ is a simulation iff:

For every state pair (s, t) such that R(s, t):

If s
x
−→ s′ for some s′ ∈ S,x ∈ Σ∪{τ} then there is

some t ′ ∈ S′ such that t
x
−→ t ′ and R(s′, t ′).

We say that L′ simulates L, denoted L ≤sim L′ iff there is

some simulation relation R such that R(s0
,s0′).

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 16/25

Simulation (cnt.)

Recall that preorders, including simulation, are
transitive: if L ≤sim L′ and L′ ≤sim L′′ then also
L ≤sim L′′.

Simulation implies trace preorder: L ≤sim L′ implies
L ≤tr L′. (But not vice versa!)

Note: Bisimulation is more than simulation both
ways: It can be the case that L ≤sim L′ and L′ ≤sim L
but the two LTSs are still not bisimilar: L 6∼ L′.
(Hint: Simulation both ways at the initial states is not
enough to guarantee simulation both ways in all the
states.)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 17/25

Simulation (cnt.)

One way to show trace containment I ≤tr S is to
instead show that I ≤sim S.

In other words, if we can show that the specification
simulates the implementation, then also all the traces
of the implementation are (good traces) allowed by
the specification.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 18/25

Simulation and Abstraction

Another use for simulation is to use it to prove
soundness of model abstractions.

If an implementation I is abstracted to (a hopefully
smaller/easier to verify) implementation I′ such that
every execution of I can be simulated by an
execution of I′ (I ≤sim I′) then this implies I ≤tr I′.

Now if we can prove I′ ≤tr S, then also I ≤tr S.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 19/25

Data Abstraction

Let us consider data abstraction using a running
example.

Assume the verified model contains an integer
variable x with a large domain and this leads to state
space explosion. Also assume that x has the initial
value 0.

Assume that all operations on x are: x++;, x--; and
comparisons: (x == 0), (x != 0).

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 20/25

Data Abstraction (cnt.)

Now we can try to make the verification model more
tractable by replacing all references to x with a
reference to a Boolean variable y tracking the
property whether x is an even number.

y should be initially true as x was initially 0.

The basic idea is to now employ enough
non-determinism in the abstract program in order to
be able to simulate the concrete program with it.

We need to define some new notation. Let * in the
expression (* ? foo : bar) denote the
non-deterministic choice between returning the value
foo or the value bar.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 21/25

Data Abstraction (cnt.)

The operations on x now become (in C syntax extended
with the non-deterministic choice of a Boolean value *):

unsigned int x = 0; becomes bool y = true;

x++; becomes y = !y;

x--; becomes y = !y;

(x == 0) becomes
(y ? (* ? true : false) : false)

(x != 0) becomes
(y ? (* ? false : true) : true)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 22/25

Data Abstraction (cnt.)

We get the abstract program by replacing each
occurrence of the variable x in the concrete program
by the syntactic replacement using the variable y as
shown in the previous slide.

Intuition on how the replacements were obtained:
Do case analysis on the potential values v of x
the current value of y might map to, and combine
the results with non-determinism:

Execute the concrete operation using the value
v for x to obtain a new value v’ for x.
Abstract the value of v’ to the domain of y to
obtain the new value of y.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 23/25

Data Abstraction (cnt.)

Consider now the case:
(x == 0) becomes
(y ? (* ? true : false) : false)

Clearly if we know x is odd, the comparison
(x == 0) will evaluate to false

If we know x is even, in the original program x might
either have the value 0 or not.

In order to guarantee that the abstract version is able
to simulate the behavior of the concrete one in both
cases, we will have to do a non-deterministic choice
on evaluating (x == 0) to either true or false.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 24/25

Data Abstraction (cnt.)

It is now easy to prove that after these syntactic
replacements the abstract program P′ containing y
will be able to simulate any execution of the concrete
program P containing x

If we can now prove that P′ ≤tr S for some
specification S, then also P ≤tr S.

Note how non-determinism was required in order to
perform the abstraction. Thus non-determinism is a
valuable feature in a modelling language.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 25/25

	Abstraction with Traces
	Abstraction (cnt.)
	Abstraction (cnt.)
	Abstraction (warning)
	Abstraction for Deadlock Detection
	Abstraction for Deadlock Detection
	Bisimulation
	Bisimulation (cnt.)
	Bisimulation Definition
	Bisimulation Notes
	Bisimulation Notes (cnt.)
	Bisimulation Algorithms
	Bisimulation and Other Equivalences
	Bisimulation (recap)
	Simulation
	Simulation (cnt.)
	Simulation (cnt.)
	Simulation and Abstraction
	Data Abstraction
	Data Abstraction (cnt.)
	Data Abstraction (cnt.)
	Data Abstraction (cnt.)
	Data Abstraction (cnt.)
	Data Abstraction (cnt.)

