
T–79.4301 Parallel and
Distributed Systems (4 ECTS)

T–79.4301 Rinnakkaiset ja hajautetut järjestelmät (4 op)

Lecture 5
18th of February 2008

Keijo Heljanko
Keijo.Heljanko@tkk.fi

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 1/38

Home Exercise 1

The home exercise 1 is now available through the
course homepage:
http://www.tcs.tkk.fi/Studies/T-79.4301/

The exercise is to be done individually, and the topic
is modelling an elevator controller in Promela and
verifying some safety properties of it with Spin

The deadline is on Monday 3rd of March at 12:15

The deadline is strict!

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 2/38

http://www.tcs.tkk.fi/Studies/T-79.4301/

Example: Determinization

We want to determinize the following automaton A1 over
the alphabet Σ = {a,b}.

b

b

b

q3 q4

q2q1

b

b

b

b

a

A1

b
q0

a

b

b

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 3/38

Example: Determinization Result

As a result we obtain the automaton A below. (In this
course it always suffices to only consider the part
reachable from the initial state!)

b

a

A

{q0}

a

b

a

b
{q3,q4}

a

a

b b

/0

{q2}

{q1,q2,q3,q4}

{q4}

a,b

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 4/38

Example: Complementation

Let’s call the result of the previous slide A1, and
complement the result. We get:

b

a

A

{q0}

a

b

a

b
{q3,q4}

a

a

b b

/0

{q2}

{q1,q2,q3,q4}

{q4}

a,b

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 5/38

Boolean Operations

We have now shown that finite state automata are
closed under all Boolean operations, as with ∪, ∩,
and A all other Boolean operations can be done.

All operations except for determinization (which is
also used to complement nondeterministic
automata!) created a polynomial size output in the
size of the inputs.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 6/38

State Explosion from Intersection

Note, however, that even if A1,A2,A3,A4 have k
states each, the automaton
A′

4 = A1 ∩ A2 ∩ A3 ∩ A4 (sometimes alternatively
called the synchronous product and denoted
A′

4 = A1×A2×A3×A4) can have k4 states, and

thus in the general A′
i will have ki states.

Therefore even if a single use of ∩ is polynomial,
repeated applications often will result in a state
explosion problem.

In fact, the use of × as demonstrated above could in
principle be used to compose the behavior of a
parallel system from its components.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 7/38

Checking Safety Properties with FSA

A safety property can be informally described as a
property stating that “nothing bad should happen”.
(We will come back to the formal definition later in
the course.)

When checking safety properties, the behavior of a
system can be described by a finite state automaton,
call it A.

Also in the allowed behaviors of the system can be
specified by another automaton, call it the
specification automaton S.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 8/38

Checking Safety (cnt.)

Assume that the specification specifies all legal
behaviors of the system. In other words a system is
incorrect if it has some behavior (accepts a word)
that is not accepted by the specification. In other
words a correct implementation has less behavior
than the specification, or more formally L(A) ⊆ L(S).

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 9/38

Language Containment

Checking whether L(A) ⊆ L(S) holds is referred to
as performing a language containment check.

Recall: By using simple automata theoretic
constructions given above, we can now check
whether the system meets its specification. Namely,
we can create a product automaton
P = A∩Sand then check whether L(P) = /0.

In case the safety property does not hold, the
automaton P has a counterexample run rp which
accepts a word w, such that w∈ L(A) but w 6∈ L(S).

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 10/38

Creating the Counterexample

By projecting rp on the states of A one can obtain a
run of ra of the system (a sequence of states of the
system) which violates the specification S.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 11/38

Example: Safety Property

Consider the problem of mutual exclusion. Assume
that the alphabet is Σ = {e1,e2, l1, l2}, where e1
means that process 1 enters the critical section and
l1 means that process 1 leaves the critical section.

The automaton Sspecifying correct mutual exclusion
property is the following.

e1

e2

s0

S

l2

l1

s2

s1

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 12/38

Example: Safety Property (cnt.)

If we want to check whether L(A) ⊆ L(S), we need to
complement S. We get the following:

e1

e2

S

{s2}

{s1}

l2

l1

l1, l2

e1,e2, l2

e1,e2, l1

{s0}

e1,e2, l1, l2

/0

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 13/38

Example: Safety Property (cnt.)

If we now have an automaton A modelling the behavior of

the mutex system, we can create the product automaton

P = A ∩ det(S). Now the mutex system is correct iff the

automaton P does not accept any word.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 14/38

Labeled Transition System (LTS)

Labeled transition system (LTS) is a variant of the
finite state automaton (FSA) model better suited for
modelling asynchronous systems (software)

They are a very simple model of concurrency and as
such they are simple to understand and there are
very few variants

We will use them in the course to demonstrate
concurrency related phenomena

The simplicity of model is intentional in order not to
focus too much on the modelling language but on the
concurrency related phenomenon at hand

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 15/38

LTSs (cnt.)

Because LTSs are so simple, modelling with them
can be cumbersome. We will later show how the LTS
model can be extended with features to make
modeling with them closer to Promela

Promela models also have all the same concurrency
phenomena as LTS based models

We will start introducing LTSs by recalling the
definition of finite state automata

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 16/38

Finite State Automaton (recap)

Recall the definition of FSA from Lecture 4:

Definition 1 A (nondeterministic finite) automaton Ais a
tuple(Σ,S,S0

,∆,F), where

Σ is a finitealphabet,

S is a finite set ofstates,

S0 ⊆ S is the set ofinitial states,

∆ ⊆ S×Σ×S is thetransition relation
(no ε-transitions allowed), and

F ⊆ S is the set ofaccepting states.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 17/38

Labeled Transition System (LTS)

Definition 2 A labeled transition system Lis a tuple
(Σ,S,s0

,∆), where

Σ is a finitealphabetnot containing the symbolτ,

S is a finite set ofstates,

S0 = {s0} wheres0 ∈ S is theinitial state, and

∆ ⊆ S×Σ∪{τ}×S is thetransition relation
(containing alsoτ-transitions).

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 18/38

LTS vs. FSA

Changes:

A new special symbol τ (“tau”), denoting an internal
action (also called the invisible action)

The alphabet Σ now specifies those visible actions
on which the LTS can synchronize with other LTSs

A single initial state s0

The transition relation also includes τ-transitions
internal to the component (these are almost but not
quite the same as ε-moves in some FSA models)

No final states (think of all the states being final)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 19/38

LTS vs. FSA (cnt.)

Why LTSs instead of FSAs?

FSA based models are more natural for synchronous
systems such as hardware, while LTS based models
are more natural for asynchronous systems such as
concurrent software

The main difference is the parallel composition
operator

f
(also called the asynchronous product) is

used to compose a system out of its components:
L = L1

f
L2

f
· · ·

f
Ln instead of using the synchronous

product (also called the intersection ∩):
A = A1×A2×·· ·×An.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 20/38

Basic LTS Notation

Let L = (Σ,S,S0
,∆) be an LTS, s,s′ ∈ S, s0,s1, . . .sn ∈ S,

x1,x2, . . .xn ∈ Σ∪{τ}. We define:

s
x
−→ s′ iff (s,x,s′) ∈ ∆

s0
x1−→ s1

x2−→ s2
x3−→ ·· ·

xn−→ sn iff for all 1≤ i ≤ n:

si−1
xi−→ si

s
x1x2,...,xn
−−−−−→ s′ iff there are some s0,s1, . . . ,sn such that

s0 = s, sn = s′, and s0
x1−→ s1

x2−→ s2
x3−→ ·· ·

xn−→ sn

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 21/38

Basic LTS Notation (cnt.)

s→ s′ iff for some σ ∈ (Σ∪{τ})∗ it holds that s
σ
−→ s′

s→ iff for some s′ it holds that s→ s′

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 22/38

Basic LTS Notation (cnt.)

s
a
=⇒ s′ iff there is a∈ Σ and s0,s1,s2,s3 ∈ Ssuch that

s0 = s, s3 = s′, and s0
τ∗
−→ s1

a
−→ s2

τ∗
−→ s3

s0
a1=⇒ s1

a2=⇒ s2
a3=⇒ ···

an=⇒ sn iff for all 1≤ i ≤ n: ai ∈ Σ
and si−1

ai=⇒ si

s
a1a2,...,an
=====⇒ s′ iff there are some s0,s1, . . . ,sn such that

s0 = s, sn = s′, ai ∈ Σ, and s0
a1=⇒ s1

a2=⇒ s2
a3=⇒ ···

an=⇒ sn

s⇒ s′ iff for some σ ∈ Σ∗ it holds that s
σ
=⇒ s′

s⇒ iff for some s′ it holds that s⇒ s′

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 23/38

Basic LTS Notation (cnt.)

L → iff for s0 it holds that s0 →

L ⇒ iff for s0 it holds that s0 ⇒

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 24/38

Parallel Composition
f

Let’s now create an LTS L = (Σ,S,S0
,∆) by composing n

LTSs:
L1 = (Σ1,S1,S0

1,∆1),

L2 = (Σ2,S2,S0
2,∆2),

. . . ,

Ln = (Σn,Sn,S0
n,∆n)

in parallel:

L = L1
f

L2
f
· · ·

f
Ln

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 25/38

Parallel Composition
f

(cnt.)

The intuition:

Pick an initial state from each LTS

Any process can do a τ-transition on its own, and
others remain in their current states during its
execution

If a is in the alphabet for several LTSs, all of them
must be able to perform it before it can be executed

When executing a, all LTSs with a in their
alphabet move, while all other LTSs remain in
their current states

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 26/38

Definition of
f

Definition 3 Parallel composition L= L1
f

L2
f
· · ·

f
Ln is

an LTS(Σ,S,S0
,∆), where

Σ = Σ1∪Σ2∪·· ·∪Σn,

S= S1×S2×·· ·×Sn
(states of the parallel composition are tuples
s= (s1,s2, . . . ,sn)),

S0 = {(s0
1,s

0
2, · · · ,s

0
n)}

(a single initial state where each component LTSsLi
is in its initial state), and

∆ ⊆ S×Σ∪{τ}×S is thetransition relation, where:

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 27/38

Definition of
f

(cnt.)

(s,x,s′) ∈ ∆ where
s= (s1,s2, . . . ,sn),
x∈ Σ∪{τ}, and
s′ = (s′1,s

′
2, . . . ,s

′
n) iff:

x = τ: there is 1≤ i ≤ n such that
(si,τ,s′i) ∈ ∆i and
s′j = sj for all 1≤ j ≤ n, when j 6= i.

x 6= τ: for every 1≤ i ≤ n:
(si,x,s′i) ∈ ∆i , when x∈ Σi and
s′i = si , when x 6∈ Σi .

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 28/38

Example: Parallel Composition

Compute the parallel composition L = L1
f
L2

f
L3,

where the LTSs L1, L2, and L3 are given on the next
slide

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 29/38

Example: Parallel Composition (cnt.)

t3

Σ2 = {a,b}

b

τ

L2 :

a

t1

t2

Σ1 = {a,c}

τ

L3 :
u1

u3

u4

Σ3 = {b,c}

c

L1 :

τ a

s1

s4

s3

s2

u2

c

b

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 30/38

Example: Result L = L1
f
L2

f
L3

L : Σ = {a,b,c}

c

a

a

b

τ
τ

τ

τ

τ
bτ

a

τ

τ
τ

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 31/38

Reachability Analysis

Reachability analysis is a way to implement model
checking

We have now shown how parallel composition of
LTSs is done directly based on the definition

Most model checking algorithms are based on an
algorithm which implements the generation of a
graph containing all the reachable global states of
the system

Let’s now give this algorithm in an abstract setting,
independent of the used model of concurrency:
Thus the algorithm works for, e.g., the parallel
composition of LTSs or a Promela

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 32/38

Reachability Graph

We want to generate a graph G = (V,T,E,v0),
where

V is the set of reachable global states of the system,

T is the set of executable global transitions of the
system,

E ⊆V ×T ×V is the set of executable global state
changes of the system (arcs/edges of the
reachability graph), and

v0 ∈V is the initial global state of the system.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 33/38

Reachability Graph: Subroutines

We need the following subroutines:
enabled(v): Given a global state v it returns the
list of all global transitions t which are enabled in
v
v’ = fire(v,t): Given a global state v, and a
global transition t which is enabled at v, it returns
the global state v’ reached from v by firing t

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 34/38

Reachability Graph Algorithm (part 1)

graph RG; /* Global - empty reachability graph */

reachability_graph(state v_0) {

RG.init(); /* Initialize data structures */

RG.add_node(v_0); /* Add initial state to the RG */

RG.mark_initial(v_0); /* Mark the initial state */

search(v_0); /* Process initial state */

/* RG now contains the reachability graph */

}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 35/38

Reachability Graph Algorithm (part 2)

search(state v) {

state v’;

transition t;

forall t in enabled(v) {

/* Optionally add here: code to add t to T */

v’ = fire(v,t); /* firing t at v results in v’ */

if !RG.has_node(v’) { /* v’ already processed? */

RG.add_node(v’); /* Add new state v’ to V */

search(v’); /* Process v’ */

}

RG.add_edge(v,t,v’); /* Add arc (v,t,v’) to E */

}

}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 36/38

Implementation Issues

Modern model checkers such as Spin can handle
reachability graphs with the number of reachable
states in tens of millions

The most time and memory critical routines are
RG.has_node(v’) and RG.add_node(v’)

Usually the state storage inside model checker is
very carefully engineered to minimize memory usage

In more complex system models the routine
enabled(v) can become the bottleneck

In many cases the line RG.add_edge(v,t,v’) can
be removed if only state properties are of interest.
Also, usually enabled(v) can be recomputed at will

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 37/38

Implementation Issues (cnt.)

The algorithm presented is depth-first search (DFS),
which is the default in Spin

Also breadth-first search (BFS) is often implemented
as it guarantees shortest paths to assertion failure
states

If the set of nodes is too large to fit in the memory,
database techniques (B-trees etc.) can be used to
implement RG.has_node(v’) and
RG.add_node(v’). However, this slows down
search by several orders of magnitude.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 38/38

	Home Exercise 1
	Example: Determinization
	Example: Determinization Result
	Example: Complementation
	Boolean Operations
	State Explosion from Intersection
	Checking Safety Properties with FSA
	Checking Safety (cnt.)
	Language Containment
	Creating the Counterexample
	Example: Safety Property
	Example: Safety Property (cnt.)
	Example: Safety Property (cnt.)
	Labeled Transition System (LTS)
	LTSs (cnt.)
	Finite State Automaton (recap)
	Labeled Transition System (LTS)
	LTS vs.{ }FSA
	LTS vs.{ }FSA (cnt.)
	Basic LTS Notation
	Basic LTS Notation (cnt.)
	Basic LTS Notation (cnt.)
	Basic LTS Notation (cnt.)
	Parallel Composition $�igparallel $
	Parallel Composition $�igparallel $ (cnt.)
	Definition of $�igparallel $
	Definition of $�igparallel $ (cnt.)
	Example: Parallel Composition
	Example: Parallel Composition (cnt.)
	Example: Result $L = L_1 �igparallel L_2 �igparallel L_3$
	Reachability Analysis
	Reachability Graph
	Reachability Graph: Subroutines
	Reachability Graph Algorithm (part 1)
	Reachability Graph Algorithm (part 2)
	Implementation Issues
	Implementation Issues (cnt.)

