
T–79.4301 Parallel and
Distributed Systems (4 ECTS)

T–79.4301 Rinnakkaiset ja hajautetut järjestelmät (4 op)

Lecture 4
11th of February 2008

Keijo Heljanko
Keijo.Heljanko@tkk.fi

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 1/40

Advanced Promela - d_step

Similar, more advanced version of atomic, example:
d_step { /* Swap values of a and b */

tmp = b;
b = a;
a = tmp

}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 2/40

Advanced Promela - d_step (cnt.)

Differences to atomic
May not contain non-determinism (deterministic
step)
It is a runtime error if some statement inside
d_step blocks
The states reached inside a d_step sequence do
not exists in the statespace of the system, only
the last state reached by the execution does
No goto’s in or out of a d_step
d_step can exists inside an atomic sequence
but not vice versa

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 3/40

Example: atomic vs. d_step

byte a[12];

init {

int i = 0;

d_step { /* d_step is a slight winner here. */

do

:: (i < 12) -> a[i] = (i*5)+2; i++;

:: else -> break;

od;

i = 0; /* zero i to avoid introducing new states */

};

atomic { /* Run might block, better use atomic.*/

run foo(); run bar();}; /* atomic startup. */

}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 4/40

No atomic vs. atomic vs. d_step

byte x,y;

/* Compare the state-spaces of: */

/* Non-atomic */

active proctype P1() { x++; x++; x++}

active proctype P2() { y++; y++; y++}

/* P1 atomic */

active proctype P1() { atomic {x++; x++; x++} }

active proctype P2() { y++; y++; y++}

/* P1 d_step */

active proctype P1() { d_step {x++; x++; x++} }

active proctype P2() { y++; y++; y++}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 5/40

atomic vs. d_step

The use of atomic sequences might sometimes be
necessary to model a feature of the system (e.g,
atomic swap of two variables implemented in HW)

Their use often allows for more efficient analysis of
models

Rule of thumb: When in doubt, use atomic, it is
harder to shoot to your own foot with it

d_step is handy for internal computation, e.g., to
initialize some arrays

Misuse of atomic and d_step (overuse) might hide
the concurrency bugs you are looking for, be careful!

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 6/40

Example: Check for Blocking

You can check that in your models statements inside
atomic are never blocked by:
/* Add a new variable */

bit aflag;

/* Change each atomic block: */

/* atomic { foo; bar; baz;} */

/* to: */

/* atomic { foo; aflag=1; bar; baz; aflag=0;} */

/* Add an atomicity observer: */

active proctype aflag_monitor {

assert(!aflag);

}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 7/40

A Word of Warning

The exact semantics of atomic and d_step are very
involved, see:

The Spin Model Checker - Primer and Reference
Manual

Features which interact with atomic and d_step in
“interesting” ways are (try to avoid unless you really
really know what you are doing):

goto’s in and out of atomic sequences
Combining rendezvous and atomic or d_step in
various ways
Complex loops inside atomic or d_step
(the model checker might get stuck there!)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 8/40

The Promela timeout

The Promela timeout statement becomes
executable if there is no process in the system which
would be otherwise executable

Models a global timeout mechanism

Can be dangerous to use in modelling, as it provides
an escape from deadlock states - it is easy to hide
real concurrency problems (unwanted deadlocks) by
using it

Timeouts can often be alternatively modelled by just
using the skip keyword in place of the timeout

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 9/40

Macros

Promela uses the C-language preprocessor to
preprocess Promela models. Things you can do with it
are e.g.,:
/* Constants */

#define CHANNEL_CAPACITY 3

/* Macros */

#define RESET_VARS(x) \

d_step { x[0] = 0; \

x[1] = 0; \

x[2] = 0; }

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 10/40

Macros (cnt.)

/* Make models conditional */

#define FOO 1

#ifdef FOO

/* Case FOO */

#endif

#ifndef FOO

/* Case not FOO */

#endif

/* Use skip to model timeouts */

#define timeout skip

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 11/40

inline - Poor Man’s Procedures

Promela also has its own macro-expansion feature called
inline. It basically works by exactly the same textual
replacement mechanism as C macro expansion.
inline example(x, y) {

y = a;

x = b;

assert(x)

}

init {

int a, b;

example(a,b)

}
T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 12/40

inline (cnt.)

When using inline keep in mind that

Promela only has two scopes: global and process
local

Thus all variables should be declared outside the
inline

inline cannot be used as an expression

Use spin -I to debug problems with inline
definitions (it shows the inlines extended)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 13/40

Advanced Modelling Tips

If you want to know more, the following papers contain
advanced Promela modelling tips:

Theo C. Ruys: SPIN Tutorial: how to become a SPIN
Doctor, In Proceedings of the 9th SPIN Workshop,
LNCS 2318, pp. 6–13, 2002. Available from:
http://spinroot.com/spin/Workshops/ws02/ruys_abs.pdf

Theo C. Ruys: Low-Fat Recipes for SPIN, In
Proceedings of the 7th SPIN Workshop, LNCS 1885,
pp. 287–321, 2000. Available from:
http://spinroot.com/spin/Workshops/ws00/18850290.pdf

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 14/40

http://spinroot.com/spin/Workshops/ws02/ruys_abs.pdf
http://spinroot.com/spin/Workshops/ws00/18850290.pdf

Automata Theoretic Approach

A short theory of model checking using automata

Assume you have a finite state automaton (FSA) of
the behavior of the system A
(see Lecture 1 automaton AM for an example)

Assume the specified property is also specified with
an FSA S

Now the system fulfils the specification, if the
language of the system is contained in the language
of the specification:
i.e., it holds that L(A) ⊆ L(S)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 15/40

Automata Theoretic Approach (cnt.)

If you have studied the course:
“T-79.1001 Introduction to Theoretical Computer
Science T”
or one of its predecessors well, you know how to
proceed:

We need to generate the product automaton:
P = A∩ S, where S is an automaton which accepts
the complement language of L(S)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 16/40

Automata Theoretic Approach (cnt.)

If L(P) = /0, i.e., P does not accept any word, then
the property holds and thus the system is correct

Otherwise, there is some run of P which violates the
specification, and we can generate a counterexample
execution of the system from it (more on this later)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 17/40

Language Inclusions

L(S)

L(A)

Good
behaviours behaviours

Bad

Σ∗

L(P) =

L(S)

L(A)∩L(S)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 18/40

Finite State Automata

Finite state automata (FSA) can be used to model
finite state systems, as well as specifications for
systems.

In this course they form the theoretical foundations of
model checking algorithms

Next we recall and adapt automata theory from
previous courses

The classes of automata will later be extended with
features such as variables and message queues to
make them more suitable for protocol modelling

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 19/40

Finite State Automaton

Definition 1 A (nondeterministic finite) automaton Ais a
tuple(Σ,S,S0,∆,F), where

Σ is a finitealphabet,

S is a finite set ofstates,

S0 ⊆ S is the set ofinitial states,

∆ ⊆ S×Σ×S is thetransition relation
(no ε-transitions allowed), and

F ⊆ S is the set ofaccepting states.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 20/40

Deterministic Automata (DFA)

An automaton A is deterministic (DFA) if |S0| = 1 and for
all pairs s∈ S,a∈ Σ it holds that if for some s′ ∈ S:
(s,a,s′) ∈ ∆ then there is no s′′ ∈ Ssuch that s′′ 6= s′ and
(s,a,s′′) ∈ ∆.

(I.e., there is only at most one state which can be reached

from s with a.)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 21/40

Transition Relation

The meaning of the transition relation ∆ ⊆ S×Σ×S
is the following: (s,a,s′) ∈ ∆ means that there is a
move from state s to state s′ with symbol a.

An alternative (equivalent) definition gives the
transition relation as a function
ρ : S×Σ → 2S, where ρ(s,a) gives the set of states
to which the automaton can move with a from state s.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 22/40

Synonyms for FSA

Synonyms for the word automaton are: finite state ma-

chine (FSM), finite state automaton (FSA), nondetermin-

istic finite automaton (NFA), and finite automaton on finite

strings/words.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 23/40

Runs

A finite automaton A accepts a set of words L(A) ⊆ Σ∗

called the language accepted by A, defined as follows:

A run r of A on a finite word a0, . . . ,an−1 ∈ Σ∗ is a
sequence s0, . . . ,sn of (n+1) states in S, such that
s0 ∈ S0, and (si,ai,si+1) ∈ ∆ for all 0≤ i < n.

The run r is accepting iff sn ∈ F . A word w∈ Σ∗ is
accepted by A iff A has an accepting run on w.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 24/40

Languages

The language of A, denoted L(A) ⊆ Σ∗ is the set of
finite words accepted by A.

A language of automaton A is said to be empty when
L(A) = /0.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 25/40

Boolean Operations with Automata

Let us now recall basic operations with finite state
automata.

We will do this by defining the Boolean operators for
finite automata:
A = A1 ∪ A2,A = A1 ∩ A2, and A = A1.

These operations will as a result have an automaton
A, such that:
L(A) = L(A1) ∪ L(A2),L(A) = L(A1) ∩ L(A2), and

L(A) = (Σ∗ \L(A1)) = L(A1), respectively.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 26/40

Example: Operations on Automata

As a running example we will use the following automata
A1 and A2, both over the alphabet Σ = {a,b}. We draw
boxes around automata to show which parts belong to
which.

b

a,bs0
A1 s1

b

A2

a

b

b

b
t0

t2

t1

a

b

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 27/40

A = A1 ∪ A2

Definition 2 Let A1 = (Σ,S1,S0
1,∆1,F1) and

A2 = (Σ,S2,S0
2,∆2,F2). We define theunionautomaton

to beA = (Σ,S,S0,∆,F), where:

S= S1 ∪ S2,

S0 = S0
1 ∪ S0

2
(Note: noε-moves but several initial states instead),

∆ = ∆1 ∪ ∆2, and

F = F1 ∪ F2.

We have L(A) = L(A1) ∪ L(A2).

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 28/40

Example: Union of Automata

The following automaton A is the union, A = A1 ∪ A2.

a

b

b

b
t0

t2

a

b

t1

b

a,bs0 s1

b

Σ = {a,b}

A

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 29/40

A = A1 ∩ A2

Definition 3 Let A1 = (Σ,S1,S0
1,∆1,F1) and

A2 = (Σ,S2,S0
2,∆2,F2). We define theproductautomaton

to beA = (Σ,S,S0,∆,F), where:

S= S1×S2,

S0 = S0
1×S0

2,

for all s,s′ ∈ S1, t, t ′ ∈ S2,a∈ Σ:
((s, t),a,(s′, t ′)) ∈ ∆ iff (s,a,s′) ∈ ∆1 and
(t,a, t ′) ∈ ∆2; and

F = F1×F2.

We have L(A) = L(A1) ∩ L(A2).
T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 30/40

Example: Intersection of Automata

The following automaton A is the intersection (product)
A = A1 ∩ A2.

b

b

b

(s0, t2) (s1, t2)

(s1, t1)(s0, t1)

b

b

b

b

a

A

b
(s0, t0)

a

b

b

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 31/40

Complementation

The definition of complementation is slightly more
complicated.

We say that an automaton has a completely specified
transition relation if for all states s∈ Sand symbols
a∈ Σ there exist a state s′ ∈ Ssuch that (s,a,s′) ∈ ∆.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 32/40

Completely Specified Automata

Any automaton which does not have a completely
specified transition relation can be turned into one by:

adding a new sink state qs,

making qs a non-accepting state,

adding for all a∈ Σ an arc (qs,a,qs), and

for all pairs s∈ S,a∈ Σ: if there is no state s′ such
that (s,a,s′) ∈ ∆, then add an arc (s,a,qs).
(Add all those arcs which are still missing to fulfil the
completely specified property.)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 33/40

Complementing DFAs

Note that this construction does not change the
language accepted by the automaton.

We first give a complementation definition which only
works for completely specified deterministic
automata!

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 34/40

Complementing DFAs (cnt.)

Definition 4 Let A1 = (Σ,S1,S0
1,∆1,F1) be a

deterministicautomaton with a completely specified
transition relation. We define thedeterministic
complementautomaton to beA = (Σ,S,S0,∆,F), where:

S= S1,

S0 = S0
1,

∆ = ∆1, and

F = S1\F1 (“flip the acceptance bit”).

We have L(A) = (Σ∗ \L(A1)).

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 35/40

Complementing NFAs

The operations we have defined for finite state
automata so far have resulted in automata whose
size is polynomial in the sizes of input automata.

The most straightforward way of implementing
complementation of a non-deterministic automaton is
to first determinize it, and after this to complement
the corresponding deterministic automaton.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 36/40

Complementing NFAs (cnt.)

Unfortunately determinization yields an exponential
blow-up. (A worst-case exponential blow-up is in fact
unavoidable in complementing non-deterministic
automata.)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 37/40

Determinization

Definition 5 Let A1 = (Σ,S1,S0
1,∆1,F1) be a

non-deterministic automaton. We define a deterministic
automatonA = (Σ,S,S0,∆,F), where

S= 2S1, the set of all sets of states inS1,

S0 = {S0
1}, a single state containing all the initial

states ofA1,

(Q,a,Q′) ∈ ∆ iff Q∈ S,a∈ Σ, and
Q′ = {s′ ∈ S1 | there is(s,a,s′) ∈ ∆1 such thats∈
Q}; and

F = {s∈ S| s∩ F1 6= /0}, those states inSwhich
contain at least one accepting state ofA1.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 38/40

Determinization (cnt.)

The intuition behind the construction is that it
combines all possible runs on given input word into
one run, where we keep track of all the possible
states we can currently be in by using the “state
label”.
(The automaton state consists of the set of states in
which the automaton can be in after reading the input
so far.)

We denote the construction of the previous slide with
A = det(A1) Note that L(A) = L(A1), and A is
deterministic. If A1 has n states, the automaton A will
contain 2n states.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 39/40

Determinization (cnt.)

Note also that the determinization construction gives
an automaton A with a completely specified
transition relation as output. Thus to complement an
automaton A1, we can use the procedure
A′ = det(A1), A = A′, and we get that

L(A) = Σ∗ \L(A′) = Σ∗ \L(A1) = L(A1).

To optimize the construction slightly, usually only
those states of A which are reachable from the initial
state are added to set of states set of A.

One can also use the classical DFA minimization
algorithm to reduce the size of the result further.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 40/40

	Advanced Promela - prom {d_step}
	Advanced Promela - prom {d_step} (cnt.)
	Example: prom {atomic} vs.{ }prom {d_step}
	No atomic vs.{ }prom {atomic} vs.{ }prom {d_step}
	prom {atomic} vs.{ }prom {d_step}
	Example: Check for Blocking
	A Word of Warning
	The Promela prom {timeout}
	Macros
	Macros (cnt.)
	prom {inline} - Poor Man's Procedures
	prom {inline} (cnt.)
	Advanced Modelling Tips
	Automata Theoretic Approach
	Automata Theoretic Approach (cnt.)
	Automata Theoretic Approach (cnt.)
	Language Inclusions
	Finite State Automata
	Finite State Automaton
	Deterministic Automata (DFA)
	Transition Relation
	Synonyms for FSA
	Runs
	Languages
	Boolean Operations with Automata
	Example: Operations on Automata
	(A = A_1 , cup , A_2)
	Example: Union of Automata
	(A = A_1 , cap , A_2)
	Example: Intersection of Automata
	Complementation
	Completely Specified Automata
	Complementing DFAs
	Complementing DFAs (cnt.)
	Complementing NFAs
	Complementing NFAs (cnt.)
	Determinization
	Determinization (cnt.)
	Determinization (cnt.)

