
T–79.4301 Parallel and
Distributed Systems (4 ECTS)

T–79.4301 Rinnakkaiset ja hajautetut järjestelmät (4 op)

Lecture 3
4th of February 2008

Keijo Heljanko
Keijo.Heljanko@tkk.fi

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 1/46

Spin and XSpin Installed

The spin and xspin binaries are installed to the
computing centre Linux workstations:
http://www.tkk.fi/atk/luokat/computernames.html

Basically you need to add the directory:
/p/edu/t-79.4301/bin
to your executable search path

See the course homepage for more detailed
instructions for different shells:
http://www.tcs.tkk.fi/Studies/T-79.4301/

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 2/46

http://www.tkk.fi/atk/luokat/computernames.html
http://www.tcs.tkk.fi/Studies/T-79.4301/

Installing Yourself

Optionally, installing Spin to your own machine is
also pretty straightforward, just follow the instructions
for (Unix(Linux)/Windows/Mac) at:
http://spinroot.com/spin/Man/README.html

Hint for Linux users:
The first three line of the xspin script need for Linux
to be replaced with:

#!/usr/bin/wish -f
the next line restarts using wish \
#exec wish c:/cygwin/bin/xspin -- $*

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 3/46

http://spinroot.com/spin/Man/README.html

Arrays and Records

Array indices start at 0. No multidimensional arrays.
Records (C style structs) are available through the
typedef keyword:

typedef foo {

short f1;

byte f2;

}

foo rr; /* variable declaration */

rr.f1 = 0;

rr.f2 = 200;

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 4/46

Variables and Types

Variables need to be declared

Variables can be given value by:
Assignment
Argument passing (input parameters to
processes)
Message passing

Variables have exactly two scopes: global and
process local variables

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 5/46

Data Manipulation

Most of C language arithmetic, relational, and logical
operations on variables are supported in Spin with the
same syntax (including comparison operators, bitshifts,
masking etc.)

When in doubt, try the “C” way of doing things and you will

probably be right.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 6/46

Data Manipulation, Example

active[1] proctype foo() {

int c,d;

printf("c:%d d:%d\n", c, d);

c++;

c++;

d = c+1;

d = d<<1;

c = c*d;

printf("c:%d d:%d\n", c, d);

c = c&3;

d = d/5;

printf("c:%d d:%d\n", c, d);

}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 7/46

Data Manipulation, Example

Running the example we get:

$ spin ex4.pml

c:0 d:0

c:12 d:6

c:0 d:1

1 process created

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 8/46

Conditional Expressions

C-style conditional expressions have to be replaced:
active[1] proctype foo() {

int a,b,c,d;

b=1;c=2;d=3;

#if 0

a = b ? c : d; /* not valid in Promela! */

a = b -> c : d; /* not valid in Promela! */

#endif

a = (b -> c : d); /* valid in Promela */

printf("a:%d\n", a);

}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 9/46

Conditional Expressions (cnt.)

The parenthesis in "(foo -> bar : baz)" are vital!
The expression "foo -> bar : baz" will generate a
syntax error!

$ spin ex5.pml

a:2

1 process created

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 10/46

Promela Statements

The body of a process consists of a sequence of
statements

A statement can in current global state of the model
either be:

Executable: the statement can be executed in the
current global state
Blocked: the statement cannot be executed in the
current global state

Assignments are always executable

An expression is executable if it evaluates to
non-zero (true)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 11/46

Executable Statements

0<1; /* Always executable */

x<5; /* Executable only when x is smaller than 5 */

3+x; /* Executable if x is not -3 */

(x > 0 && y > x); /* Executable if x > 0 and y > x */

/* Note: This is a single, atomic

statement! */

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 12/46

Statements

The skip statement is always executable. It does
nothing but changes the value of the program
counter

The run statement is executable if a new process
can be created (recall the 255 process limit)

The printf statement is always executable (it is
used only for simulations, not in model checking)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 13/46

Statements (cnt.)

assert(<expr>);

The assert statement is always executable

If <expr> evaluates to zero, Spin will exit with an
error

The assert statements are handy for checking
whether certain properties hold in the current global
state of the model

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 14/46

Intuition of the Promela Semantics

Promela processes execute in parallel

Non-deterministic scheduling of the processes

Processes are interleaved - statements of
concurrently running processes cannot occur
simultaneously

All statements are atomic - each statement is
executed without interleaving of other processes

Each process can be non-deterministic - have
several executable statements enabled. Only one
statement is selected for execution
nondeterministically

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 15/46

The if-statement

Now we proceed to non-atomic compound statements.
The if statement is also called the selection statement
and has gotten its syntax from Dijkstra’s guarded
command language.
Example:
chan STDIN;

active[1] proctype foo() {

int c;

STDIN?c; /* Read a char from standard input */

if

:: (c == -1) -> skip; /* EOF */

:: ((c % 2) == 0) -> printf("Even\n");

:: ((c % 2) == 1) -> printf("Odd\n");

fi

}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 16/46

Example: if-statement

$ spin ex6.pml

a

Odd

1 process created

$ spin ex6.pml

b

Even

1 process created

$ spin ex6.pml

1 process created

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 17/46

The if-statement (cnt.)

The if-statement has the general form:

if

:: (choice_1) -> statement_1_1; statement_1_2; ...

:: (choice_2) -> statement_2_1; statement_2_2; ...

:: ...

:: (choice_n) -> statement_n_1; statement_n_2; ...

fi

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 18/46

The if-statement (cnt.)

The if-statement is executable if there is a
choice_i statement which is executable. Otherwise
i is blocked.

If several choice_i statements are executable, Spin
non-deterministically chooses one to be executed.

If choice_i is executed, the execution then
proceeds to executing statement_i_1;
statement_i_2; ... statement_i_m;

After this the program continues from the next
statement after the fi

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 19/46

Example 2: if-statement

An else branch is taken only if none of choice_i is
executable

active[10] proctype foo() {

pid p = _pid;

if

:: (p > 2) -> p++;

:: (p > 3) -> p--;

:: else -> p = 0;

fi;

printf("Pid:%d, p:%d\n", _pid, p)

}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 20/46

Example 2: if-statement (cnt.)

$ spin -T ex7.pml

Pid:7, p:8

Pid:0, p:0

Pid:3, p:4

Pid:9, p:8

Pid:6, p:7

Pid:4, p:3

Pid:1, p:0

Pid:5, p:6

Pid:2, p:0

Pid:8, p:9

10 processes created

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 21/46

The do-statement

The way of doing loops in Promela

With respect to choices, a do statement behaves
same way as an if-statement

However, after one selection has been made the
do-statement repeats the choice selection

The (always executable) break statement can be
used to exit the loop and continue from the next
statement after the od

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 22/46

The do-statement (cnt.)

The do-statement has the general form:

do

:: (choice_1) -> statement1_1; statement1_2; ...

:: (choice_2) -> statement2_1; statement2_2; ...

:: ...

:: (choice_n) -> statementn_1; statementn_2; ...

od

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 23/46

Example: For loop

active[1] proctype foo() {

int i = 0;

do

:: (i < 10) -> printf("i: %d\n",i); i++;

:: else -> break

od

}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 24/46

Example: For loop (cnt.)

$ spin ex8.pml

i: 0

i: 1

i: 2

i: 3

i: 4

i: 5

i: 6

i: 7

i: 8

i: 9

1 process created

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 25/46

Example: Euclid

proctype Euclid(int x, y)

{

do

:: (x > y) -> x = x - y

:: (x < y) -> y = y - x

:: (x == y) -> break

od;

printf("answer: %d\n", x)

}

init { run Euclid(38, 14) }

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 26/46

Example: Euclid (cnt.)

Running the algorithm we get:

$ spin euclid.pml

answer: 2

2 processes created

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 27/46

Example: Infamous goto-statement

proctype Euclid(int x, y)

{

do

:: (x > y) -> x = x - y

:: (x < y) -> y = y - x

:: (x == y) -> goto done

od;

done:

printf("answer: %d\n", x)

}

init { run Euclid(38, 14) }

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 28/46

Communication

Message passing through message channels (first-in
first-out (FIFO) queues)

Rendezvous synchronization (handshake).
Syntactically appears as communication over a
channel with capacity zero

Both are defined by channels:
chan <chan_name> = [<capacity>] of
{<t_1>, <t_1>,..., <t_n>};

where t_i are the types of the elements transmitted over

the channel.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 29/46

Sending Messages

Consider the case where ch is a channel with capacity
≥ 1

The send-statement:
ch ! <expr_1>, <expr_2>,..., <expr_n>;

Is executable only if the channel is not full
Puts a message at the end of the message
channel ch
The message consists of a tuple of the values of
the expressions <expr_i> - the types should
match the channel declaration

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 30/46

Receiving Messages

Consider the case where ch is a channel with capacity
≥ 1

The receive-statement:
ch ? <var_1>, <var_2>,..., <var_n>;

Is executable only if the channel is not empty
Receives the first message of the message
channel ch and fetches the individual fields of the
vars into variables <var_i> - the types should
match the channel declaration
An of the <var_i> can be replaced by a
constant. In that case the statement is executable
only if the first message matches the constants.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 31/46

Example: Alternating Bit Protocol

mtype = { msg0, msg1, ack0, ack1 };

chan to_sndr = [2] of { mtype };

chan to_rcvr = [2] of { mtype };

active proctype Sender()

{

again:

to_rcvr!msg1;

to_sndr?ack1;

to_rcvr!msg0;

to_sndr?ack0;

goto again

}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 32/46

Example: Alternating Bit Protocol

active proctype Receiver()

{

again:

to_rcvr?msg1;

to_sndr!ack1;

to_rcvr?msg0;

to_sndr!ack0;

goto again

}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 33/46

Example: Alternating Bit Protocol

$ spin -c -u10 alternatingbit.pml

proc 0 = Sender

proc 1 = Receiver

q\p 0 1

1 to_rcvr!msg1

1 . to_rcvr?msg1

2 . to_sndr!ack1

2 to_sndr?ack1

1 to_rcvr!msg0

1 . to_rcvr?msg0

2 . to_sndr!ack0

2 to_sndr?ack0

depth-limit (-u10 steps) reached

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 34/46

Advanced Promela

Promela is somewhat like the C language - very
powerful but at the same time hard to fully master

In the following we discuss more advanced modelling
features of Promela

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 35/46

Alternative Send/Receive Syntax

Alternative syntax for the send-statement:
ch ! <expr_1> (<expr_2>,..., <expr_n>);

Alternative syntax for the receive-statement:
ch ? <var_1> (<var_2>,..., <var_n>);

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 36/46

More Promela Message Passing

Peeking at the message channel can be
implemented in Promela with:
ch ? [<var_1>, <var_2>,..., <var_n>];
It is executable iff the message receive would be but
does not actually remove the message from the
channel. Moreover, the contents of the variables
<var_i> remain unchanged.

To do the same except that this time the variables
<var_i> are changed, use:
ch ? <<var_1>, <var_2>,..., <var_n>>;
For example, ch ? <x,y> puts the contents of the
first message in the channel ch to vars x and y
without removing the message from the channel.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 37/46

Other Channel Operations

len(ch) - returns the number of messages in
channel ch

empty(ch) - returns true if ch is empty, otherwise
returns false

nempty(ch) - returns true if ch is not empty,
otherwise returns false

full(ch) - returns true if ch is full, otherwise
returns false

nfull(ch) - returns true if ch is not full, otherwise
returns false

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 38/46

Rendezvous Communication

In Promela the synchronization between two
processes (rendezvous) is syntactically implemented
as message passing over a channel of capacity 0.

In this case the channel cannot store messages, only
pass immediately from the sender to the receiver.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 39/46

Rendezvous Example

mtype = { msgtype };

chan name = [0] of { mtype, byte };

active proctype A()

{ name!msgtype(124); /* Alternative syntax */

name!msgtype(121) /* used here */

}

active proctype B()

{ byte state;

name?msgtype(state) /* And here */

}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 40/46

Rendezvous Example (cnt.)

The processes A and B in the example synchronize:
The execution of both the send and the receive is
blocked until a matching send/receive pair becomes
enabled.

When a matching send/receive pair is enabled, they
can execute and communicate in an atomic step the
sent message from the sender to the receiver.

Note that if the channel had a capacity of 2 in the
example, the process A could already terminate
before the process B starts executing.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 41/46

Executability of Statements (recap)

skip - always executable

assert(<expr>) - always executable

<expression> - executable if not zero

<assignment> - always executable

if - executable if at least one guard is

do - executable if at least one guard is

break - always executable

send ch ! msg - executable if channel ch is not full

receive ch ? var - executable if channel ch is not
empty

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 42/46

Advanced Promela - atomic

In Promela a sequence of statements can be grouped
together to execute atomically by using the atomic
compound statement:
atomic { /* Swap values of a and b */

tmp = b;
b = a;
a = tmp

}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 43/46

Atomic Sequences (cnt.)

The sequence of statements inside an atomic
sequence execute together in an uninterrupted
manner

In other words no other process can be scheduled
until the atomic sequence has been completed

In the example that means that no other process can
be run to see the state where both a and b contains
the old value of a

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 44/46

Atomic - Examples

The following Promela statement sequences are not
atomic:

nfull(ch) -> ch!msg0; /* Not atomic! */
ch?[msg0] -> ch?msg0; /* Not atomic! */

They can be replaced by:

atomic { nfull(ch) -> ch!msg0 };/* Atomic! */
ch?msg0; /* Trivially atomic! */

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 45/46

Atomic Sequences - Details

The atomic sequences are also allowed to contain
branching and non-determinism

If any statement inside an atomic sequence is found
to be unexecutable (i.e., it blocks the execution),
other processes are allowed to run

The states reached inside an atomic sequence still
exists in the statespace of the system, not only the
last state reached by the execution

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 46/46

	Spin and XSpin Installed
	Installing Yourself
	Arrays and Records
	Variables and Types
	Data Manipulation
	Data Manipulation, Example
	Data Manipulation, Example
	Conditional Expressions
	Conditional Expressions (cnt.)
	Promela Statements
	Executable Statements
	Statements
	Statements (cnt.)
	Intuition of the Promela Semantics
	The prom {if}-statement
	Example: prom {if}-statement
	The prom {if}-statement (cnt.)
	The prom {if}-statement (cnt.)
	Example 2: prom {if}-statement
	Example 2: prom {if}-statement (cnt.)
	The prom {do}-statement
	The prom {do}-statement (cnt.)
	Example: For loop
	Example: For loop (cnt.)
	Example: Euclid
	Example: Euclid (cnt.)
	Example: Infamous prom {goto}-statement
	Communication
	Sending Messages
	Receiving Messages
	Example: Alternating Bit Protocol
	Example: Alternating Bit Protocol
	Example: Alternating Bit Protocol
	Advanced Promela
	Alternative Send/Receive Syntax
	More Promela Message Passing
	Other Channel Operations
	Rendezvous Communication
	Rendezvous Example
	Rendezvous Example (cnt.)
	Executability of Statements (recap)
	Advanced Promela - prom {atomic}
	Atomic Sequences (cnt.)
	Atomic - Examples
	Atomic Sequences - Details

