
T–79.4301 Parallel and
Distributed Systems (4 ECTS)

T–79.4301 Rinnakkaiset ja hajautetut järjestelmät (4 op)

Lecture 11
21st of April 2008

Keijo Heljanko
Keijo.Heljanko@tkk.fi

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 1/35

Exam Info

The exam is on Tue 8th of May 2008, 13:00-16:00 in
lecture hall T1 in the CS building.

Remember to register for the exam in WWWTopi.

The exam will cover the material of Lectures 1-11
(Lecture 12 is not part of the exam requirements),
Tutorials 1-8, as well as the home exercises 1-3.

If you have not received the ≥50% score from the
home exercises but still want to take the exam,
please contact the Lecturer first.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 2/35

Exam Info (cnt.)

The questions will be available both in Finnish and in
English.

The preliminary plan is that the next exam is in
August/September, and the one after that is in
December.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 3/35

Spin neverclaim

Spin has a feature called neverclaim which for
safety properties allows one to add an observer
automaton to the system that observes each
transition of the Promela program.

Thus essentially, the reachability graph of the
Promela program is synchronized with an observer
automaton essentially using the finite state machine
(not LTS!) synchronization construction.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 4/35

Example

The following neverclaim detects all safety violations of
the past safety formula G(p):
never {

do
:: true
:: !p -> break
od

}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 5/35

Neverclaims

Each transition of the Promela program is followed
by one transition of a neverclaim.

The neverclaim can not change the state of the
system but can evaluate expressions based on the
current value of atomic propositions.

Thus a neverclaim can be seen as an EFSM which
does not contain any operations, just expressions.

Control flow is usually accomplished by using gotos.

If the end of a neverclaim is ever reached, Spin
reports an error.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 6/35

Checking Safety with Neverclaims

Intuitively neverclaims accept behaviors of the
system that are counterexamples to the safety
property being model checked.

Thus any violation of a safety property expressible as
an NFA can easily be mapped to a neverclaim.

Neverclaims can also express liveness properties,
but handling those is outside the scope of this
course.

When using partial order reductions the neverclaims
used should be stuttering invariant, otherwise
counterexamples can be erroneously missed!

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 7/35

Model Checking Approaches

Explicit state model checking - reachability analysis
combined with advanced reduction techniques such
as ample sets, often used for data communications
protocol SW, example tool: Spin

Symbolic model checking with BDDs - reachability
graph is stored compactly with binary decision
diagrams, and computing the set of reachable states
symbolically, often used for small hardware designs,
example tool: NuSMV

Bounded model checking with SAT - states
reachable within k transitions are represented as a
propositional satisfiability formula, incomplete, often
used for debugging HW, example tool: NuSMV

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 8/35

Model Checking Approaches (cnt.)

Counterexample guided abstraction refinement - an
abstract model is generated from the input language
(e.g., C-language) program and it is checked against
the specification. If a counterexample is found that is
spurious due to the fact that the abstraction is too
coarse, the model is refined to remove this
counterexample, and model checking is done again
in the refined model. Example tools: SLAM, Blast.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 9/35

Testing guided by Model Checking

Concolic testing - this is a testing method utilizing
model checking to improve coverage of test cases
generated. First a random test case against the
(Java) program is run. From this test run a set of
path constraints of the execution are collected (with
code instrumentation) reflecting paths that were not
covered by the test run. These constraint are fed to a
constraint solver, that finds inputs to the program that
drive the next test run of the program through
uncovered path in the control flow graph. Example
tool: jCute.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 10/35

Property Specification Languages

In the hardware design community there has been a
push towards standardized property specification
languages. The most common ones are:

PSL - Property Specification Language, IEEE
1850
(http://www.eda-stds.org/ieee-1850/,
http://www.pslsugar.org/). It includes the
LTL temporal logic and other features such as
regular expressions.
SVA - SystemVerilog Assertions
(http://www.systemverilog.org/). A
assertions language with similar goals as PSL
built into SystemVerilog HW design language.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 11/35

http://www.eda-stds.org/ieee-1850/
http://www.pslsugar.org/
http://www.systemverilog.org/

Property Specification Languages

For software model checking usually LTL or one of its
subsets is used as the specification language.

Also regular expressions and finite state machines
are used to express safety properties of software.

The challenge in the software side in standardizing
the property specification language lies in the vastly
more complex data handling compared to the HW
case.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 12/35

Fairness

Fairness is a property of a system model often required
to prove liveness properties of systems. They place
additional constraints on what kind of looping (infinite)
behaviors of the system are allowed. The two main types
of fairness are:

Weak fairness: Each weakly fair transition of the
system is either disabled in infinitely many times or it
is taken infinitely many times.

Strong fairness: Each strongly fair transition of the
system that is enabled infinitely many times is also
fired infinitely many times.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 13/35

Fairness (cnt.)

The rest of this lecture will be a demonstration, not part of

the exam requirements.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 14/35

Fair P/T-nets

A fair P/T-net is a P/T-net with a fairness mapping
f : T 7→ {n,w,s}, where n stands for no fairness, w
stands for weak fairness, and s stands for strong
fairness.

By definition, all finite runs of a fair P/T-net are fair.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 15/35

Fair P/T-nets (cnt.)

An infinite run of a P/T-net
σ = M0

t0−→ M1
t1−→ M2

t2−→ . . . is fair iff for each
transition t ∈ T :

f (t) = n: ⊤ - no requirements for σ,

f (t) = w: Either ti = t for infinitely many i ≥ 0, or
t 6∈ enabled(Mi) for infinitely many i ≥ 0.

f (t) = s: If t ∈ enabled(Mi) for infinitely many
i ≥ 0, then ti = t for infinitely many i ≥ 0.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 16/35

Fair P/T-nets (cnt.)

It is easy to prove that every fair Petri net has a fair
run. (It is easy to define alternative notions of
fairness where this is not the case.)

A fair P/T-net satisfies a temporal logic formula ψ iff
π |= ψ holds for every fair run of the P/T-net.

The Maria model checker contains a direct support
for both weak and strong fairness constraints of fair
Petri nets.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 17/35

Fair P/T-nets (cnt.)

If ψ is a safety formula, the satisfaction of formulas is
not affected by fairness.

In the case ψ is a liveness formula, fairness
constraints say that all fair runs of the system should
satisfy the liveness property, while we don’t care
what happens in the non-fair runs.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 18/35

Fairness Example

Consider a system consisting of two processes,
where the first process wants to execute a single
local action in order to terminate.

If we do not assume anything about the scheduling
speeds of the two processes, we cannot prove that
the first process will eventually terminate, as the
second process can run in a loop without the first
process ever being scheduled.

If we make the single transition of the first process
weakly fair, then in all fair runs of the system the first
process will in fact terminate.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 19/35

Uses of Fairness of Modelling

Often the different kinds of fairness are used in:

No fairness: Events controlled by the environment,
subroutines which might not terminate, etc.

Weak fairness: Transitions of the system fully
controlled by the running process, subroutines that
will terminate, exits from critical sections.

Strong fairness: Allocation of shared resources,
entries to the critical section, different scheduling
decisions by the scheduler, packet loss in a channel.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 20/35

Implementing Fairness

Suppose that you have managed to prove that some
progress properties of the system hold under
fairness in the model, and the model needs to be
implemented in a programming language.

It want be very hard to implement fairness in practice!

For example, if some shared resources are allocated
in a strongly fair fashion, you basically have to
implement a scheduler (round-robin, etc.) to allocate
the resources in a way that is fair towards all
participants.

Weak fairness is often simpler as it is usually a
side-product of the operating system scheduler.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 21/35

Implementing Fairness (cnt.)

Sometimes it is infeasible/impossible to implement a
scheduler.

There are several ways to overcome such problems,
which include:

Using timers/counters to detect when no progress
is being made and resorting to a backup scheme
when the timer fires / the counter indicates no
progress has been made in a long time.
Using randomization to make the probability of
not making progress small. (See for example
Ethernet CSMA/CD.)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 22/35

Fairness Teaser

How would you implement a shared memory
multiprocessor memory system with n = 1024
processors using 230 cache lines worth of memory in
a fashion that guarantees progress for all processors
but is still of high performance? (Hint: There is no
easy answer...)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 23/35

Model Checking Tools

In the following slides model checking tools other
than Spin are described

All the tools are freely available (under various
licences) unless otherwise stated

The comments on the strengths of the tools are
highly subjective

See the table of model checkers at:
http://anna.fi.muni.cz/yahoda/

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 24/35

http://anna.fi.muni.cz/yahoda/

NuSMV 2

Homepage: nusmv.irst.itc.it/

A model checker (mainly) for hardware, a remake of
the SMV model checker

BDD based symbolic model checker

Bounded model checker

Licence: LGPL

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 25/35

nusmv.irst.itc.it/

IBM Rulebase

Homepage:
http://www.haifa.ibm.com/projects/verification/RB_Homepage/index.html

A commercial hardware model checker by IBM

BDD based symbolic model checker

Bounded model checker

Parallelized model checkers

Licence: Commercial, University program available

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 26/35

http://www.haifa.ibm.com/projects/verification/RB_Homepage/index.html

Java Pathfinder 2

Homepage:
http://javapathfinder.sourceforge.net/

A model checker for Java programs

Implementation technique: A full custom Java virtual
machine

See also other Java model checkers such as
Bandera
(http://bandera.projects.cis.ksu.edu/) and
Bogor (http://bogor.projects.cis.ksu.edu/).

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 27/35

http://javapathfinder.sourceforge.net/
http://bandera.projects.cis.ksu.edu/
http://bogor.projects.cis.ksu.edu/

Uppaal

Homepage: http://www.uppaal.com/

A model checker for timed systems

Free for academic use, commercial licences available

See also other model checkers for timed systems
such as: IF
(http://www-verimag.imag.fr/~async/IF/)
which also handles untimed systems

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 28/35

http://www.uppaal.com/
http://www-verimag.imag.fr/~async/IF/

SLAM

Homepage:
http://research.microsoft.com/slam/

A model checker for sequential C programs (correct
use of locking primitives in Windows device drivers)
heavily employing abstraction

Licence: Not available outside Microsoft

See also: Zing
(http://research.microsoft.com/zing/)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 29/35

http://research.microsoft.com/slam/
http://research.microsoft.com/zing/

Blast

BLAST – Berkeley Lazy Abstraction Software
Verification Tool

Homepage:
http://mtc.epfl.ch/software-tools/blast/

Model checker for C programs

Employs lazy abstraction refinement

Licence: Modified BSD licence

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 30/35

http://mtc.epfl.ch/software-tools/blast/

DiVinE

DiVinE – Distributed Verification Environment

Homepage: http://anna.fi.muni.cz/divine/

A distributed model checker for computing clusters

Accepts Promela programs and is thus also available
for verifying Spin models

Uses NIPS:
http://wwwhome.cs.utwente.nl/~michaelw/nips/ as a
virtual machine to interpret Promela models. See
NIPS homepage for further details about Promela
semantics.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 31/35

http://anna.fi.muni.cz/divine/
http://wwwhome.cs.utwente.nl/~michaelw/nips/

Maria

Homepage:
http://www.tcs.hut.fi/Software/maria/

A model checker for high-level Petri nets

Good support for LTL model checking under fairness

Very extensive data manipulation support, quite
flexible as a model checker back-end

Licence: GPL

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 32/35

http://www.tcs.hut.fi/Software/maria/

PROD

Homepage:
http://www.tcs.hut.fi/Software/prod/

A model checker for high-level Petri nets (Pr/T-nets)

Very good partial order reduction algorithms
available (even better than Spin in many cases)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 33/35

http://www.tcs.hut.fi/Software/prod/

Murϕ

A model checker for asynchronous systems in a
formalism closely related to Petri nets

Good symmetry reduction algorithms available

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 34/35

The Model Checking Kit

Homepage:
http://www.fmi.uni-stuttgart.de/szs/tools/mckit/overview.shtml

A collection of different model checking tools behind
a single interface

Provides an easy way to try different methods on
small model checking problems

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 35/35

http://www.fmi.uni-stuttgart.de/szs/tools/mckit/overview.shtml

	Exam Info
	Exam Info (cnt.)
	Spin prom {neverclaim}
	Example
	Neverclaims
	Checking Safety with Neverclaims
	Model Checking Approaches
	Model Checking Approaches (cnt.)
	Testing guided by Model Checking
	Property Specification Languages
	Property Specification Languages
	Fairness
	Fairness (cnt.)
	Fair P/T-nets
	Fair P/T-nets (cnt.)
	Fair P/T-nets (cnt.)
	Fair P/T-nets (cnt.)
	Fairness Example
	Uses of Fairness of Modelling
	Implementing Fairness
	Implementing Fairness (cnt.)
	Fairness Teaser
	Model Checking Tools
	NuSMV 2
	IBM Rulebase
	Java Pathfinder 2
	Uppaal
	SLAM
	Blast
	DiVinE
	Maria
	PROD
	Mur$varphi $
	The Model Checking Kit

