
T–79.4301 Spring 2007
Parallel and Distributed Systems
Tutorial 8 – Solutions

1. a) LetMa = (Sa,s0
a,Ra,La), where

Sa = {s0},
s0
a = s0,

Ra = /0, and
L(s0) = {p,q}.

s0

L = {p,q}

The Kripke structureMa has the unique executionσ1 = s0, which corre-
sponds to the execution pathπ1 = L(s0) = {p,q}. We check thatMa |= G p
holds. (Throughout the discussion, we denote the length of afinite sequence
x by |x|: for example,|σ1| = |π1| = 1 in this case.)

Ma |= G p
iff π |= G p for all execution pathsπ in Ma (semantics of|=)

iff π1 |= G p (Ma has the unique execution pathπ1)

iff πi
1 |= p for all 0≤ i < |π1| (semantics ofG)

iff π0
1 |= p (|π1| = 1)

iff p∈ L(s0) (semantics of|=)

iff p∈ {p,q} (definition of|=)

Becausep∈ {p,q} holds,Ma |= G p holds. Similarly,

Ma |= G(p⇒ q)
iff π |= G(p⇒ q) for all execution pathsπ in Ma (semantics of|=)

iff π1 |= G(p⇒ q) (Ma has the unique execution pathπ1)

iff πi
1 |= p⇒ q for all 0≤ i < |π1| (semantics ofG)

iff π0
1 |= p⇒ q (|π1| = 1)

iff π0
1 |= (¬p)∨q (semantics of⇒)

iff π0
1 |= ¬p or π0

1 |= q (semantics of∨)

iff π0
1 6|= p or π0

1 |= q (semantics of¬)

iff p /∈ L(s0) or q∈ L(s0) (semantics of|=)

iff p /∈ {p,q} or q∈ {p,q} (definition of L)

Becauseq∈ {p,q} holds, it follows thatMa |= G(p⇒ q) holds.

b) Let Mb = (Sb,s0
b,Rb,Lb), where

Sb = {s0,s1},
s0
b = s0,

Rb =
{

(s0,s1)
}

,
L(s0) = {p,q}, and
L(s1) = {q}.

The Kripke structureMb has two executionsσ1 =
s0 andσ2 = s0s1 corresponding to the execution
pathsπ1 = L(s0) and π2 = L(s0)L(s1), respec-
tively.

s0

s1

L = {p,q}

L = {q}

Mb 6|= G p
iff not (Mb |= G p) (semantics of|=)

iff not (π |= G p for all execution pathsπ in Mb) (–)

iff π 6|= G p for some execution pathπ in Mb (–)

In this case, we see thatπ2 6|= G p:

π2 6|= G p
iff not (π2 |= G p) (semantics of|=)

iff not (πi
2 |= p for all 0≤ i < |π2|) (semantics ofG)

iff πi
2 6|= p for some 0≤ i < |π2| (semantics of|=)

iff π0
2 6|= p or π1

2 6|= p (|π2| = 2)

iff p /∈ L(s0) or p /∈ L(s1) (semantics of|=)

iff p /∈ {p,q} or p /∈ {q} (definition of L)

Becausep /∈ {q} = L(s1) holds,π2 6|= G p holds, and it follows thatMb 6|=
G p.

To check thatMb |= G(p∨Y q) holds, we need to check that bothπ1 |=
G(p∨Y q) andπ2 |= G(p∨Y q) hold in the modelMb. This can be seen as
follows:

π1 |= G(p∨Y q)
iff πi

1 |= p∨Y q for all 0≤ i < |π1| (semantics ofG)

iff π0
1 |= p∨Y q (|π1| = 1)

iff π0
1 |= p or π0

1 |= Y q (semantics of∨)

Becausep∈ L(s0) = {p,q} (i.e.,π0
1 |= p) holds, it follows thatπ1 |= G(p∨

Y q).

π2 |= G(p∨Y q)
iff πi

2 |= p∨Y q for all 0≤ i < |π2| (semantics ofG)

iff π0
2 |= p∨Y q andπ1

2 |= p∨Y q (|π2| = 2)

iff (π0
2 |= p or π0

2 |= Y q) and (π1
2 |= p or π1

2 |= Y q) (semantics of∨)

iff (π0
2 |= p or (0> 0 andπ0−1

2 |= q)) and
(π1

2 |= p or (1> 0 andπ1−1
2 |= q)) (semantics ofY)

iff (π0
2 |= p) and (π1

2 |= p or π0
2 |= q) (0 6> 0, 1 > 0)

Because{p,q} ⊆ L(s0) = {p,q} holds (i.e.,π0
2 |= p andπ0

2 |= q), it follows
that alsoπ2 |= G(p∨Y q). Therefore,Mb |= G(p∨Y q).

c) Let Mc = (Sc,s0
c,Rc,Lc), where

Sc = {s0,s1,s2},
s0
c = s0,

Rc =
{

(s0,s1),(s1,s2)
}

,
L(s0) = /0,
L(s1) = {q}, and
L(s2) = {p,q}.

The Kripke structureMc has three executions
σ1 = s0, σ2 = s0s1 andσ3 = s0s1s2 correspond-
ing to the execution pathsπ1 = L(s0), π2 =
L(s0)L(s1) and π3 = L(s0)L(s1)L(s2), respec-
tively.

s0

s1

s2

L = /0

L = {q}

L = {p,q}

Mc |= G
(

p⇒ (qS¬p)
)

iff πi |= G
(

p⇒ (qS¬p)
)

for all i ∈ {1,2,3} (semantics of|=)

iff π j
i |= p⇒ (qS¬p) for all i ∈ {1,2,3} and 0≤ j < |πi|

(semantics ofG)

iff π j
i |= (¬p)∨ (qS¬p) for all i ∈ {1,2,3} and 0≤ j < |πi|

(semantics of⇒)

iff π j
i |= ¬p or π j

i |= qS¬p for all i ∈ {1,2,3} and 0≤ j < |πi|
(semantics of∨)

iff π j
i 6|= p or π j

i |= qS¬p for all i ∈ {1,2,3} and 0≤ j < |πi|
(semantics of¬)

Becausep /∈ L(s0) = /0 and p /∈ L(s1) = {q} hold, it follows thatπ j
i 6|= p

holds for alli ∈ {1,2,3} and 0≤ j < min
{

2, |πi|}. Thereforeπ1 |= G
(

p⇒

(qS¬p)
)

andπ2 |= G
(

p⇒ (qS¬p)
)

hold, andπ j
3 |= p⇒ (qS¬p) holds for

all j ∈ {0,1}. Thusπ3 |= G
(

p⇒ (qS¬p)
)

(and therefore,Mc |= G
(

p ⇒

(qS¬p)
)

) holds iff π2
3 |= p⇒ (qS¬p).

π2
3 |= p⇒ (qS¬p)

iff π2
3 6|= p or π2

3 |= qS¬p (see above)

iff p /∈ L(s2) or (there exists an index 0≤ k≤ 2 such thatπk
3 |= ¬p and

πn
3 |= q for all k < n≤ 2) (semantics of|=, S)

iff there exists an index 0≤ k≤ 2 such thatπk
3 6|= p andπn

3 |= q for all
k < n≤ 2 (p∈ L(s2) = {p,q}, semantics of|=)

iff (π0
3 6|= p andπ1

3 |= q andπ2
3 |= q) or

(π1
3 6|= p andπ2

3 |= q) or
(π2

3 6|= p) (k is one of0,1,2)

Becausep /∈ L(s0) = /0 andp /∈ L(s1) = {q} (i.e.,π0
3 6|= p andπ1

3 6|= p) hold,
butq∈L(s1) andq∈L(s2)= {p,q} (i.e.,π1

3 |= qandπ2
3 |= q) hold, it follows

that the above condition is satisfied. Thereforeπ2
3 |= p ⇒ (qS¬p), and it

follows thatMc |= G
(

p⇒ (qS¬p)
)

.

As above, becausep /∈ L(s0) and p /∈ L(s1), it is easy to check thatπ j
i |=

p⇒ YY ¬p holds for alli ∈ {1,2,3} and 0≤ j < min
{

2, |πi|
}

. Therefore,
Mc |= G(p⇒ YY ¬p) holds iff π2

3 |= p⇒ YY ¬p.

π2
3 |= p⇒ YY ¬p

iff π2
3 |= (¬p)∨YY ¬p (semantics of⇒)

iff π2
3 |= ¬p or π2

3 |= YY ¬p (semantics of∨)

iff π2
3 6|= p or (2> 0 andπ2−1

3 |= Y¬p) (semantics of¬, Y)

iff p /∈ L(s2) or π1
3 |= Y¬p (2 > 0, semantics of|=)

iff 1 > 0 andπ1−1
3 |= ¬p (p∈ L(s2) = {p,q}, semantics ofY)

iff π0
3 6|= p (1 > 0, semantics of¬)

iff p /∈ L(s0) (semantics of|=)

The result now follows becausep /∈ L(s0) = /0 holds by the definition ofL.

(This solution was designed for illustrating the semanticsof the various
operators of the logic. A simpler solution is given by any Kripke model
which consists of a single state in which the atomic proposition p is false.)

d) Let Md = (Sd,s0
d,Rd,Ld), where

Sd = {s0,s1},
s0
d = s0,

Rd =
{

(s0,s1)
}

,
L(s0) = {q}, and
L(s1) = /0.

The Kripke structureMd has two executionsσ1 =
s0 andσ2 = s0s1 corresponding to the execution
pathsπ1 = L(s0) and π2 = L(s0)L(s1), respec-
tively.

s0

s1

L = {q}

L = /0

Suppose thatπ2 |= G(pSq) holds. In particular (by the semantics ofG),
π1

2 |= pSq holds in this case, and there exists an index 0≤ i ≤ 1 such that
πi

2 |= q, andπn
2 |= p for all i < n≤ 1. Clearly,i = 0 is the only index such

that πi
2 |= q holds. Becausep /∈ L(s1) = /0, however,π1

2 6|= p, and thus it
cannot be the case thatπn

2 |= p for all i < n≤ 1, contrary to the assumption.
Thereforeπ2 6|= G(pSq), and thus alsoMd 6|= G(pSq).

On the other hand,

Md |= GOq
iff π |= GOq for all execution pathsπ in Md (semantics of|=)

iff πi |= GOq for all i ∈ {1,2} (Md has the execution pathsπ1 andπ2)

iff π j
i |= Oq for all i ∈ {1,2} and 0≤ j < |πi| (semantics ofG)

iff π j
i |= ⊤Sq for all i ∈ {1,2} and 0≤ j < |πi| (semantics ofO)

iff for all i ∈ {1,2} and 0≤ j < |πi |, πk
i |= q for some 0≤ k ≤ j, and

πn
i |= ⊤ for all k < n≤ j (semantics ofS)

iff for all i ∈ {1,2} and 0≤ j < |πi |, πk
i |= q for some 0≤ k ≤ j, and

πn
i |= p∨¬p for all k < n≤ j (semantics of⊤)

iff for all i ∈ {1,2} and 0≤ j < |πi |, πk
i |= q for some 0≤ k ≤ j, and

(πn
i |= p or πn

i |= ¬p) for all k < n≤ j (semantics of∨)

iff for all i ∈ {1,2} and 0≤ j < |πi|, πk
i |= q for some 0≤ k≤ j

(πn
i |= p or πn

i |= ¬p always holds for all k< n≤ j)

Becauseq ∈ {q} = L(s0) holds, it is easy to see thatπ0
1 |= q andπ0

2 |= q
hold, and thus the above requirement is satisfied in all execution paths in
Md. ThereforeMd |= GOq holds.

2. We first characterise the finite words that are counterexamples to the for-
mula ϕ. Let π = x0x1 . . .xn ∈ (2AP)∗ be a finite word over the alphabet
2AP =

{

/0,{alarm},{crash},{alarm,crash}
}

. The wordπ is a counterex-
ample to the formulaϕ, i.e.,π 6|= G

(

alarm⇒ O(crash)
)

,

iff not (π |= G
(

alarm⇒ O(crash)
)

) (semantics of|=)

iff not (for all 0 ≤ i ≤ n: πi |= alarm⇒ O(crash)) (semantics ofG)

iff not (for all 0 ≤ i ≤ n: πi |= (¬alarm)∨O(crash))
(semantics of⇒)

iff not (for all 0 ≤ i ≤ n: (πi |= ¬alarmor πi |= O(crash)))
(semantics of∨)

iff not (for all 0 ≤ i ≤ n: (πi 6|= alarm, or there exists an index 0≤ j ≤ i
such thatπ j |= crash)) (semantics of¬,O)

iff there exists an 0≤ i ≤ n: (πi |= alarm, andπ j 6|= crashfor all 0 ≤
j ≤ i).

The counterexamples toϕ are therefore those finite words in which the sym-
bol {alarm} appears before a symbol that contains the atomic proposition
crash, i.e., the words that match the regular expression

/0∗{alarm}
(

/0∪{alarm}∪{crash}∪{alarm,crash}
)∗.

A deterministic finite automaton that accepts the counterexamples toϕ can
thus read its input one symbol at a time until (i) the input is exhausted (in
which case the automaton will not accept its input), or (ii) until it encounters
a symbol that differs from/0. The automaton then enters one of two states in
which it simply consumes the rest of the input and either accepts or rejects
the input word depending on whether the first input symbol different from
/0 was{alarm} or not.

/0

{alarm} {crash},{alarm,crash}

/0,{alarm},{crash},
{alarm,crash}

/0,{alarm},{crash},
{alarm,crash}

3. Suppose that we wish to check a system which consists of thefollowing
Promela process for violations of the safety propertyϕ from exercise 2:

bool alarm = false;
bool crash = false;

active proctype system() {

do
:: true -> skip
:: crash = true; break
od;
crash = false;
alarm = true

}

It is easy to see that—in every execution of this system—the variablealarm
will never have the valuetrue beforecrash has been set totrue at some
previous step. This system therefore satisfies the safety propertyϕ, which
expresses the requirement that a state in whichalarm istrue should always
be preceded by (or coincide with) a state in which the variable crash has
the valuetrue.

Since we already have a deterministic finite state automatonwhich accepts
violations of the safety property (see exercise 2), we wouldlike to use this
automaton as a “monitor process” that observes the global state of the sys-
tem and reports a failure if the safety property is ever violated. Obviously,
this requires coupling the monitor process with the system.Translating the
automaton from the previous exercise into aproctype definition, we obtain
the Promela code

active proctype monitor() {
do
:: (!alarm && !crash)
:: (alarm && !crash) -> assert(false)
:: (crash) ->

do
:: true -> skip
od

od
}

The behaviour of this process mimics the behaviour of the automaton: the
outerdo-loop is executed until one of the global variablesalarm andcrash
becomes true. If(alarm && !crash) is true, the monitor process executes
the assertion (reporting a failure); ifcrash is true, the process enters an
infinite loop from which the assertion can no longer be reached (since it
becomes impossible to violate the safety property in this case).

However, analysing a model that consists of the definitions of the two above
processes yields an unexpected verification result:1

1The-DREACH option for the compiler and the-i option for the verifier are used only to opti-
mize the length of the counterexample. They are not necessary to uncover the error.

$ spin -a 3.pml
$ cc -DREACH -o pan pan.c
$./pan -i
hint: this search is more efficient if pan.c is compiled -DSAFETY
pan: assertion violated 0 (at depth 4)
pan: wrote 3.pml.trail
[...]

Analysing the error trail gives the following result:

$ spin -t -p 3.pml
Starting system with pid 0
Starting monitor with pid 1

1: proc 0 (system) line 7 "3.pml" (state 3) [crash = 1]
2: proc 0 (system) line 9 "3.pml" (state 8) [crash = 0]
3: proc 0 (system) line 10 "3.pml" (state 9) [alarm = 1]
4: proc 1 (monitor) line 16 "3.pml" (state 2) [((alarm&&!(crash)))]

spin: line 16 "3.pml", Error: assertion violated
spin: text of failed assertion: assert(0)

5: proc 1 (monitor) line 16 "3.pml" (state 3) [assert(0)]
spin: trail ends after 5 steps
#processes: 2

alarm = 1
crash = 0

5: proc 1 (monitor) line 14 "3.pml" (state 10)
5: proc 0 (system) line 11 "3.pml" (state 10) <valid end state>

2 processes created
$

In this error trail, thesystem process already reaches the end of its code
before themonitor process takes even its first execution step. At this point,
the global variablesalarm andcrash have the valuestrue andfalse, re-
spectively, which leads themonitor process to execute the assertion state-
ment. Thus, ourmonitor process does not appear to work as intended: it
fails to observe that the variablecrash was set totrue at a previous step.

This verification result can be explained by examining the composition of
the two processes the model checker Spin uses for verification. The control
structure of the two processes can be depicted as the following two extended
labelled transition systems in which we decorate the statesin the “system”
LTS with the values of the global variables. The transitionsof the LTSs are
labelled with the expressions that appear in the Promela code of the pro-
cesses. These expressions form the alphabets of the LTSs; for each process,
we use an alphabet that is disjoint from the alphabet of the other process.
This is denoted by prefixing every expression used as an alphabet symbol

with “s:” or “ m:” depending on whether the expression originates from the
system process or the monitor process.

s0 [!alarm,!crash]

[!alarm,!crash] s1
s2 [!alarm,crash]

s3 [!alarm,!crash]

s4 [alarm,!crash]

s:true

s:skip

s:crash=true

s:crash=false

s:alarm=true

m0

m1
m2

m3

m:(!alarm&&!crash)

m:(alarm&&!crash)

m:assert(false)

m:(crash)

m:true

m:skip

Σsystem= {s:true, s:skip, s:crash=true, s:crash=false, s:alarm=true}
Σmonitor = {m:(!alarm&&!crash), m:(alarm&&!crash), m:assert(false),

m:(crash), m:true, m:skip}

The verifier analyses a structure which can be described as a parallel compo-
sition of the extended LTSs corresponding to the Promela processes. (When
forming the product of the extended LTSs, we consider a transition referring
to the global system variables in the monitor process to be enabled only if
the expression labelling the transition evaluates to true in the current state
of the system LTS.) This parallel composition has the following structure
(the solid lines correspond to transitions of thesystem process, the dashed
lines to transitions of themonitor process):

(s0,m0) [!alarm,!crash]

[!alarm,!crash] (s1,m0)

[alarm,!crash] (s4,m0)

[alarm,!crash] (s4,m1)

(s2,m3)
[!alarm,crash]

[!alarm,!crash] (s3,m3)

[alarm,!crash] (s4,m3)

(s2,m0) [!alarm,crash]

(s3,m0)
[!alarm,!crash]

(s2,m2) [!alarm,crash]

(s3,m2) [!alarm,!crash]

(s4,m2) [alarm,!crash]

s:true

s:skip

m:(crash)

m:true

m:true

m:true

m:skip

m:skip

m:skip

m:(!alarm&&!crash)

m:(!alarm&&!crash)

m:(!alarm&&!crash)

m:(alarm&&!crash)

m:assert(false)

s:crash=true

s:crash=false

s:crash=false

s:crash=false
s:alarm=true

s:alarm=true

s:alarm=true

Even though thesystem process satisfies the safety property, the parallel
composition of the LTSs contains a path (for example,(s0,m0)→ (s2,m0)→
(s3,m0) → (s4,m0) → (s4,m1) → (s4,m0)) in which themonitor process
executes the assertion. The reason for this is the interleaving of the tran-
sitions of the two processes in the parallel composition: there is no mech-
anism to ensure that the monitor process will always observethe change
in the value of the variablecrash in the state(s2,m0) before the system
process resets the value of the variable again tofalse. In other words,
the usual parallel composition of LTSs does not guarantee that themonitor
process remainssynchronisedwith the changes in the state of the system it
is supposed to observe.

The never claim construct of Promela provides a direct way to add to a
Promela model a process which is guaranteed to execute synchronously
with the rest of the system (only one such process per model isallowed;
furthermore, because never claims are intended to be used toobserve the
behaviour of models—intuitively, to detect behaviour thatshould “never”
happen in a system, a never claim may not contain statements that effect
changes in the system state). Instead of using aproctype definition for
the monitor process, we can thus define a monitor process that will exe-
cute synchronously with the rest of the system as anever claim with the
following syntax:

never {
do
:: (!alarm && !crash)
:: (alarm && !crash) -> assert(false)
:: (crash) ->

do
:: true -> skip
od

od
}

A verifier generated by Spin forms the composition of anever claim dec-
laration with a system comprising one or more processes by executing the
never claim synchronously with the (LTS-like) parallel composition of the
system processes. Every transition in the structure analysed by the verifier
then corresponds to apair of transitions taken by thenever claim and a
process in the rest of the model. (If either the system or thenever claim
cannot execute a transition in a system state, no transitionis generated in
the composition.) The composition of a system with anever claim thus re-
sembles more closely the product of finite automata (see notes from lecture
2) instead of the parallel composition of LTSs.

In our example system, we obtain the composition

(s0,m0) [!alarm,!crash]

[!alarm,!crash] (s1,m0)
(s2,m0) [!alarm,crash]

(s3,m2) [!alarm,!crash]

(s4,m3) [alarm,!crash]

s:true
m:(!alarm&&!crash)

s:skip
m:(!alarm&&!crash)

s:crash=true
m:(!alarm&&!crash)

s:crash=false
m:(crash)

s:alarm=true
m:true

(Note that the transition taken by thenever claim in a pair of transitions is
always chosen from the transitions enabled in the system state correspond-
ing to the source state of the pair of transitions.)

From thissynchronouscomposition of the system with the monitor process
(specified as anever claim) we see that the failing assertion can no longer
be reached.

(As stated in the assignment,assert statements are rarely used innever
claims. A more conventional way to write the never claim would be to use a
break statement in place of the assertion: a verifier generated by Spin will
report an error if thenever claim is able to reach the end of its code while
observing the system.)

More information onnever claims and the formal definitions of the vari-
ous product constructions used by Spin-generated verifierscan be found in
Appendix A of Gerard J. Holzmann’s textbookThe Spin Model Checker:
Primer and Reference Manual, Addison-Wesley, 2003.

