
AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

T–79.4301 Parallel and
Distributed Systems (4 ECTS)

T–79.4301 Rinnakkaiset ja hajautetut järjestelmät (4 op)

Lecture 6
26th of February 2007

Keijo Heljanko
Keijo.Heljanko@tkk.fi

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 1/31

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Running Example - LTSs

Consider now our running LTS example from Lecture 5,
reproduced on the next slide for convenience:

We use as global transitions tuples t = (t1, t2, t3),
where ti ∈ ∆i or ti = “−” in the case the LTS i does
not take part in t

In our running example v0 = (s1, t1,u1)

enabled(v0) = { ((s1,τ,s2),−,−),
((s1,a,s4),(t1,a, t2),−), (−,−,(u1,τ,u2)) }

fire((s1, t1,u1),((s1,a,s4),(t1,a, t2),−)) = (s4, t2,u1)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 2/31

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Running Example - LTSs (recap)

t3

Σ2 = {a,b}

b

τ

L2 :

a

t1

t2

Σ1 = {a,c}

τ

L3 :
u1

u3

u4

Σ3 = {b,c}

c

L1 :

τ a

s1

s4

s3

s2

u2

c

b

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 3/31

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Deadlocks

Let’s now formally define some new concepts for LTSs.

A deadlock is a global state v in the reachability
graph such that enabled(v) = /0
Quite often (but not always) deadlocks are signs of
“bad behavior” in the analyzed system. (Some
behaviors of the system might be modelling
“successful” termination of the system.)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 4/31

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Deadlocks (cnt.)

The process of checking whether the reachability
graph contains any deadlock states is called
deadlock checking, and it can be easily added to the
basic reachability analysis algorithm:

Report a deadlock if enabled(v) returns the
empty list of enabled transitions for some
reachable state v.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 5/31

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Livelock

A livelock (also called divergence) exists in a state s

in an LTS L, if s
τ
−→ s′ and s′

τ∗
−→ s for some state s′.

Intuitively a livelock (divergence) corresponds to a
cycle in the LTS where the LTS performs only
internal τ-transitions.

As is the case with deadlocks, quite often (but not
always) livelocks are signs of bad behavior in the
analyzed system.

Livelocks need another (simple) search algorithm to
be detected, they cannot be detected with a single
DFS or BFS.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 6/31

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Conflict

A conflict occurs in a reachable global state v of
L = L1

f
L2

f
· · ·

f
Ln if there are (at least) two

conflicting transitions t and t ′ in enabled(v) such that
there is an LTS Li with 1≤ i ≤ n, such that
t = (. . . , ti, . . .), t ′ = (. . . , t ′i , . . .), and ti 6= t ′i .

In other words, in the case of a conflict there is some com-

ponent i which has at least two local transitions ti and t ′i
enabled, and it can fire either, having to choose between

the two possibilities.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 7/31

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Conflict - Intuition

If a reachability graph of a system has no conflicts in
it, all non-determinism in it is caused by scheduling
speeds of components

Intuitively, conflict free systems are “concurrent, yet
fully deterministic”, i.e., their behavior contains no
“true non-deterministic choices”. This simplifies their
analysis greatly.

Unfortunately all real systems have conflicts:
Whenever there is a resource shared between two
components in a mutex manner, a conflict is going to
happen when it is allocated to either one of the two
components requesting access to it

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 8/31

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Independence

Two global transitions t = (t1, t2, . . . , tn) and
t ′ = (t ′1, t

′
2, . . . , t

′
n) are independent iff

t 6= t ′, and

for all 1≤ i ≤ n: if ti 6= “−” then t ′i = “−” and
if t ′i 6= “−” then ti = “−”.

Intuitively the set of LTSs which participate in t and t ′ need

to be disjoint for the two transitions to be independent.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 9/31

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Independence (cnt.)

Note that independence (as defined in this course) is a

static property of global transitions (independent of the

current state v), while conflicts are a dynamic property

(both conflicting transitions need to be enabled in v).

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 10/31

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Independence (cnt.)

Two independent transitions t and t ′ can never be in
conflict, and two conflicting transitions t and t ′ can
never be independent.

If two transitions t and t ′ are independent and they
are both in enabled(v) then they are said to be
concurrent. In this case both of the sequences of
transition t, t ′ and t ′, t can be fired from v, and the
two states reached by doing so will be the same.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 11/31

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Independence (cnt.)

If a state v has n pairwise independent transitions in
enabled(v), then any reachability graph containing v
has at least 2n nodes and n·2(n−1) edges. There are

n! = 2O(nlog2n) possible orders of firing the
independent transitions.

Such a structure is called a “diamond”, and it can be
seen as an n-dimensional hypercube (hint:
1-dimensional hypercube is the line, 2-dimensional
hypercube is the square, and 3-dimensional
hypercube is the cube) with a single entry vertex,
where all edges are directed arcs which are directed
towards a single exit vertex

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 12/31

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Independence (cnt.)

So called partial order reductions use independence
between transitions to remove reachable states from
the reachability graph while still preserving, e.g., the
existence of deadlocks

It is a common beginners mistake to assume that
going through each “diamond” induced by n
independent transitions at v by taking the
independent transitions of enabled(v) in exactly one
order will preserve the existence of, e.g., deadlocks
in the reachability graph. This is NOT the case!

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 13/31

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Counterexample: Independence

t2

t0

a τ

τ

L2 :

t1

s0

L1 : Σ1 = {a} Σ2 = {a}

s2

a

τ

s1

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 14/31

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example: Independence (cnt.)

In the initial state v0 = (s0, t0),
enabled(v0) = {((s0,τ,s1),−),(−,(t0,τ, t2))}
Now the two enabled transitions are independent

If we only fire t ′ = (−,(t0,τ, t2)) in v0, the deadlock
state (s2, t1) reachable by first firing
t = ((s0,τ,s1),−) at v0 and then firing
t ′′ = ((s1,a,s2),(t0,a, t1)) is no longer reachable

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 15/31

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example: Independence (cnt.)

Thus by removing some “internal nodes of the
diamond” deadlocks of the system can be missed.
(Note: This phenomenon is sometimes called
“confusion” in the concurrency literature.)

The partial order reduction methods know how to
deal with this problem while still being able to remove
some unnecessary interleavings of independent
transitions of the system

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 16/31

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Partial Order Reductions Disabled

$ spin -a peterson3

$ gcc -o pan -DNOREDUCE pan.c

$./pan

hint: this search is more efficient if pan.c is compiled -DSAFETY

(Spin Version 4.2.6 -- 27 October 2005)

Full statespace search for:

never claim - (none specified)

assertion violations +

acceptance cycles - (not selected)

invalid end states +

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 17/31

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Partial Order Reductions Disabled

State-vector 28 byte, depth reached 5837, errors: 0

25362 states, stored

44425 states, matched

69787 transitions (= stored+matched)

0 atomic steps

hash conflicts: 791 (resolved)

Stats on memory usage (in Megabytes):

... stuff removed ...

3.236 total actual memory usage

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 18/31

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Comparison

The partial order reductions in Spin are on by default
but can be disabled by the “-DNOREDUCE” compile
time option

Compared to the results in Lecture 5, disabling the
partial order reductions results in:

Number of stored states rose from 2999 to 25362
Number of transitions rose from 3805 to 69787
The effect was modest (just one order of
magnitude) because the example only has three
parallel processes. Usually the differences are
even larger.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 19/31

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Ample Sets

The partial order reduction algorithm implemented in
Spin is based on a method called ample sets.
(Similar methods: persistent and stubborn sets.)

The most upto-date description of the Spin algorithm
can be found from Chapter 10 of the book:

Edmund M. Clarke, Jr., Orna Grumberg, and
Doron Peled: Model Checking, MIT Press, 1999.
http://mitpress.mit.edu/book-home.tcl?isbn=0262032708

The algorithms inside Spin and other explicit state
model checkers are a main topic of the course:
T–79.5301 Reactive Systems
http://www.tcs.hut.fi/Studies/T-79.5301/

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 20/31

http://mitpress.mit.edu/book-home.tcl?isbn=0262032708
http://www.tcs.hut.fi/Studies/T-79.5301/

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Traces

The set of traces of an LTS L is defined to be set of
sequences of visible actions of L:

traces(L) = {σ ∈ Σ∗ |L
σ
=⇒}.

(Recall: τ 6∈ Σ.)

Intuitively: traces(L) is the language of all executions
of L projected on Σ, thus removing all τ-transitions.

Another intuition: See L as a non-deterministic FSA
A = lts2fsa(L) where all τ-transitions have been
replaced with ε-moves, and all states are accepting.
Now traces(L) is the language accepted by A.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 21/31

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Traces (cnt.)

Two LTSs L1 and L2 are called trace equivalent iff
traces(L1) = traces(L2).

The trace preorder ≤tr is defined as follows:
L1 ≤tr L2 iff traces(L1) ⊆ traces(L2).

Hint: A preorder is a just a relation which is reflexive
and transitive.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 22/31

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Traces (cnt.)

An LTS L deadlocking in the initial state has
traces(L) = {ε} (where ε denotes the empty word),
and therefore L ≤tr L′ for any L′.

An LTS L with traces(L′′) = Σ∗ is the maximal
element of the trace preorder, i.e., L′ ≤tr L′′ for any
LTS L′.

It is easy to construct L′′ such that
traces(L′′) = Σ∗: the LTS has one state s0, and a

transition s0 a
−→ s0 for all a∈ Σ.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 23/31

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Checking Trace Containment

To check whether L ≤tr L′ we proceed as follows:

Create a FSA A′ = lts2fsa(L′).

Create a FSA A′′ = det(A′), the determinized
version of A′ with a total transition relation.
(Requires changing the definition of det(·) slightly
to also handle ε-moves.)

Create a FSA A′′′ = A′′ by swapping the final and
non-final states of A′′.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 24/31

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Checking Trace Containment (cnt.)

To check whether L ≤tr L′ (cnt.):

See A′′′ as an LTS L′′′.
Compute the product P = L

f
L′′′.

Check if any state (s, t) is reachable in P,
where t is a final state of A′′′.

No: L ≤tr L′ holds.
Yes: L ≤tr L′ does not hold, and there is a

sequence σ ∈ Σ∗ such that (s0
, t0)

σ
=⇒ (s, t),

and thus σ is a sequence in traces(L) which
does not exist in traces(L′).

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 25/31

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

FSA Determinization with ε-moves

Definition 1 Let A1 = (Σ,S1,S0
1,∆1,F1) be a

non-deterministic automatonwith ε-moves. We define a
deterministic automatonA = (Σ,S,S0

,∆,F), where

S= 2S1, the set of all sets of states inS1,

S0 = {s′ | s
ε∗
−→ s′, for somes∈ S0

1},

(Q,a,Q′) ∈ ∆ iff Q∈ S,a∈ Σ, and
Q′ = {s′′ ∈ S1 | there is(s,a,s′) ∈ ∆1 such thats∈

Q ands′
ε∗
−→ s′′}; and

F = {s∈ S| s∩ F1 6= /0}, those states inSwhich
contain at least one accepting state ofA1.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 26/31

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Checking Trace Containment (cnt.)

Typical application: I ≤tr S, where I is an
implementation and S is a specification.

To check the trace containment I ≤tr Sone has to
determinize S.

As usual, determinization requires worst-case
exponential space in S (hopefully the specification S
is relatively small).

Trace containment is one of the most often used
ways of checking properties of systems modelled
with LTSs.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 27/31

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Abstraction with Traces

Quite often we do not have resources to directly
check that I ≤tr S, because the parallel composition
I = L1

f
L2

f
· · ·

f
Ln is just too big to handle.

We can often discard unnecessary detail from the
implementation by creating some component L′

i such
that Li ≤tr L′

i .

Now if Li ≤tr L′
i then it can be proved that also

I ≤tr I ′, where I ′ is I with the component Li replaced
with L′

i .

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 28/31

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Abstraction (cnt.)

Now clearly, if I ′ ≤tr S then also I ≤tr S.

Thus when using trace containment as the way of
checking properties, any component of the
implementation can be replaced with another one
provided that the new component “has more
behavior” than the original.

Hopefully the new component is smaller than the
original one, leading to hopefully small I ′.

This is called abstraction: leaving out unnecessary
detail by, e.g., replacing data dependent if-then-else
constructs of the modelling language with purely
non-deterministic choice.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 29/31

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Abstraction (cnt.)

Examples of abstraction in LTSs preserving traces:

Some component Li might be removed altogether by
replacing it with the one-state component L′

i , such
that traces(L′

i) = Σ∗.

Sequences of τ-transitions can be compressed away
in many cases, as long as their firing cannot be
indirectly observed in the traces of the component.

In the LTS domain in particular, it is always safe to
add arcs to LTSs as doing so can only increase the
set of traces of the component.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 30/31

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Abstraction (warning)

Note: The set of allowed abstractions depends on
the fact that we are using trace containment to check
properties!

A completely different set of allowed abstractions
applies if we were, e.g., checking the implementation
for deadlock freedom.

Thus the set of modelling abstractions that are sound
depends very closely on the properties that need to
be verified from the model!

Trace containment allows for more freedom in
choosing the right abstraction than most other
preorders.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 31/31

	Running Example - LTSs
	Running Example - LTSs (recap)
	Deadlocks
	Deadlocks (cnt.)
	Livelock
	Conflict
	Conflict - Intuition
	Independence
	Independence (cnt.)
	Independence (cnt.)
	Independence (cnt.)
	Independence (cnt.)
	Counterexample: Independence
	Example: Independence (cnt.)
	Example: Independence (cnt.)
	Partial Order Reductions Disabled
	Partial Order Reductions Disabled
	Comparison
	Ample Sets
	Traces
	Traces (cnt.)
	Traces (cnt.)
	Checking Trace Containment
	Checking Trace Containment (cnt.)
	FSA Determinization with $epsilon $-moves
	Checking Trace Containment (cnt.)
	Abstraction with Traces
	Abstraction (cnt.)
	Abstraction (cnt.)
	Abstraction (warning)

