
AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

T–79.4301 Parallel and
Distributed Systems (4 ECTS)

T–79.4301 Rinnakkaiset ja hajautetut järjestelmät (4 op)

Lecture 4
5th of February 2007

Keijo Heljanko
Keijo.Heljanko@tkk.fi

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 1/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Spin and XSpin Installed

The spin and xspin binaries are installed to the
computing centre Linux workstations:
http://www.tkk.fi/atk/luokat/computernames.html

Basically you need to add the directory:
/p/edu/t-79.4301/bin
to your executable search path

See the course homepage for more detailed
instructions for different shells:
http://www.tcs.tkk.fi/Studies/T-79.4301/

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 2/42

http://www.tkk.fi/atk/luokat/computernames.html
http://www.tcs.tkk.fi/Studies/T-79.4301/

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Installing Yourself

Optionally, installing Spin to your own machine is
also pretty straightforward, just follow the instructions
for (Unix(Linux)/Windows/Mac) at:
http://spinroot.com/spin/Man/README.html

Hint for Linux users:
The first three line of the xspin script need for Linux
to be replaced with:

#!/usr/bin/wish -f
the next line restarts using wish \
#exec wish c:/cygwin/bin/xspin -- $*

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 3/42

http://spinroot.com/spin/Man/README.html

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Advanced Promela

Like the previous Lecture, this part is based on a nice
Spin Beginners’ Tutorial by Theo C. Ruys:
http://spinroot.com/spin/Doc/SpinTutorial.pdf
and The Spin Model Checker - Primer and Reference
Manual

Promela is somewhat like the C language - very
powerful but at the same time hard to fully master

In the following we discuss more advanced modelling
features of Promela

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 4/42

http://spinroot.com/spin/Doc/SpinTutorial.pdf

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Alternative Send/Receive Syntax

Alternative syntax for the send-statement:
ch ! <expr_1> (<expr_2>,..., <expr_n>);

Alternative syntax for the receive-statement:
ch ! <var_1> (<var_2>,..., <var_n>);

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 5/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

More Promela Message Passing

Peeking at the message channel can be
implemented in Promela with:
ch ? [<var_1>, <var_2>,..., <var_n>];
It is executable iff the message receive would be but
does not actually remove the message from the
channel. Moreover, the contents of the variables
<var_i> remain unchanged.

To do the same except that this time the variables
<var_i> are changed, use:
ch ? < <var_1>, <var_2>,..., <var_n> >;
For example, ch ? <x,y> puts the contents of the
first message in the channel ch to vars x and y
without removing the message from the channel.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 6/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Other Channel Operations

len(ch) - returns the number of messages in
channel ch

empty(ch) - returns true if ch is empty, otherwise
returns false

nempty(ch) - returns true if ch is not empty,
otherwise returns false

full(ch) - returns true if ch is full, otherwise
returns false

nfull(ch) - returns true if ch is not full, otherwise
returns false

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 7/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Rendezvous Communication

In Promela the synchronization between two
processes (rendezvous) is syntactically implemented
as message passing over a channel of capacity 0.

In this case the channel cannot store messages, only
pass immediately from the sender to the receiver.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 8/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Rendezvous Example

mtype = { msgtype };

chan name = [0] of { mtype, byte };

active proctype A()

{ name!msgtype(124); /* Alternative syntax */

name!msgtype(121) /* used here */

}

active proctype B()

{ byte state;

name?msgtype(state) /* And here */

}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 9/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Rendezvous Example (cnt.)

The processes A and B in the example synchronize:
The execution of both the send and the receive is
blocked until a matching send/receive pair becomes
enabled.

When a matching send/receive pair is enabled, they
can execute and communicate in an atomic step the
sent message from the sender to the receiver.

Note that if the channel had a capacity of 2 in the
example, the process A could already terminate
before the process B starts executing.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 10/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Executability of Statements (recap)

skip - always executable

assert(<expr>) - always executable

<expression> - executable if not zero

<assignment> - always executable

if - executable if at least one guard is

do - executable if at least one guard is

break - always executable

send ch ! msg - executable if channel ch is not full

receive ch ? var - executable if channel ch is not
empty

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 11/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Advanced Promela - atomic

In Promela a sequence of statements can be grouped
together to execute atomically by using the atomic
compound statement:
atomic { /* Swap values of a and b */

tmp = b;
b = a;
a = tmp

}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 12/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Atomic Sequences (cnt.)

The sequence of statements inside an atomic
sequence execute together in an uninterrupted
manner

In other words no other process can be scheduled
until the atomic sequence has been completed

In the example that means that no other process can
be run to see the state where both a and b contains
the old value of a

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 13/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Atomic - Examples

The following Promela statement sequences are not
atomic:

nfull(ch) -> ch!msg0; /* Not atomic! */
ch?[msg0] -> ch?msg0; /* Not atomic! */

They can be replaced by:

atomic { nfull(ch) -> ch!msg0 };/* Atomic! */
ch?msg0; /* Trivially atomic! */

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 14/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Atomic Sequences - Details

The atomic sequences are also allowed to contain
branching and non-determinism

If any statement inside an atomic sequence is found
to be unexecutable (i.e., it blocks the execution),
other processes are allowed to run

The states reached inside an atomic sequence still
exists in the statespace of the system, not only the
last state reached by the execution

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 15/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Advanced Promela - d_step

Similar, more advanced version of atomic, example:
d_step { /* Swap values of a and b */

tmp = b;
b = a;
a = tmp

}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 16/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Advanced Promela - d_step (cnt.)

Differences to atomic
May not contain non-determinism (deterministic
step)
It is a runtime error if some statement inside
d_step blocks
The states reached inside a d_step sequence do
not exists in the statespace of the system, only
the last state reached by the execution does
No goto’s in or out of a d_step
d_step can exists inside an atomic sequence
but not vice versa

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 17/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example: atomic vs. d_step

byte a[12];

init {

int i = 0;

d_step { /* d_step is a slight winner here. */

do

:: (i < 12) -> a[i] = (i*5)+2; i++;

:: else -> break;

od;

i = 0; /* zero i to avoid introducing new states */

};

atomic { /* Run might block, better use atomic.*/

run foo(); run bar();}; /* atomic startup. */

}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 18/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

No atomic vs. atomic vs. d_step

byte x,y;

/* Compare the state-spaces of: */

/* Non-atomic */

active proctype P1() { x++; x++; x++}

active proctype P2() { y++; y++; y++}

/* P1 atomic */

active proctype P1() { atomic {x++; x++; x++} }

active proctype P2() { y++; y++; y++}

/* P1 d_step */

active proctype P1() { d_step {x++; x++; x++} }

active proctype P2() { y++; y++; y++}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 19/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

atomic vs. d_step

The use of atomic sequences might sometimes be
necessary to model a feature of the system (e.g,
atomic swap of two variables implemented in HW)

Their use often allows for more efficient analysis of
models

Rule of thumb: When in doubt, use atomic, it is
harder to shoot to your own foot with it

d_step is handy for internal computation, e.g., to
initialize some arrays

Misuse of atomic and d_step (overuse) might hide
the concurrency bugs you are looking for, be careful!

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 20/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example: Check for Blocking

You can check that in your models statements inside
atomic are never blocked by:
/* Add a new variable */

bit aflag;

/* Change each atomic block: */

/* atomic { foo; bar; baz;} */

/* to: */

/* atomic { foo; aflag=1; bar; baz; aflag=0;} */

/* Add an atomicity observer: */

active proctype aflag_monitor {

assert(!aflag);

}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 21/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

A Word of Warning

The exact semantics of atomic and d_step are very
involved, see:

The Spin Model Checker - Primer and Reference
Manual

Features which interact with atomic and d_step in
“interesting” ways are (try to avoid unless you really
really know what you are doing):

goto’s in and out of atomic sequences
Combining rendezvous and atomic or d_step in
various ways
Complex loops inside atomic or d_step
(the model checker might get stuck there!)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 22/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

The Promela timeout

The Promela timeout statement becomes
executable if there is no process in the system which
would be otherwise executable

Models a global timeout mechanism

Can be dangerous to use in modelling, as it provides
an escape from deadlock states - it is easy to hide
real concurrency problems (unwanted deadlocks) by
using it

Timeouts can often be alternatively modelled by just
using the skip keyword in place of the timeout

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 23/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Macros

Promela uses the C-language preprocessor to
preprocess Promela models. Things you can do with it
are e.g.,:
/* Constants */

#define CHANNEL_CAPACITY 3

/* Macros */

#define RESET_VARS(x) \

d_step { x[0] = 0; \

x[1] = 0; \

x[2] = 0; }

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 24/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Macros (cnt.)

/* Make models conditional */

#define FOO 1

#ifdef FOO

/* Case FOO */

#endif

#ifndef FOO

/* Case not FOO */

#endif

/* Use skip to model timeouts */

#define timeout skip

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 25/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

inline - Poor Man’s Procedures

Promela also has its own macro-expansion feature called
inline. It basically works by exactly the same textual
replacement mechanism as C macro expansion.
inline example(x, y) {

y = a;

x = b;

assert(x)

}

init {

int a, b;

example(a,b)

}
T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 26/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

inline (cnt.)

When using inline keep in mind that

Promela only has two scopes: global and process
local

Thus all variables should be declared outside the
inline

inline cannot be used as an expression

Use spin -I to debug problems with inline
definitions (it shows the inlines extended)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 27/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Advanced Modelling Tips

If you want to know more, the following papers contain
advanced Promela modelling tips:

Theo C. Ruys: SPIN Tutorial: how to become a SPIN
Doctor, In Proceedings of the 9th SPIN Workshop,
LNCS 2318, pp. 6–13, 2002. Available from:
http://spinroot.com/spin/Workshops/ws02/ruys_abs.pdf

Theo C. Ruys: Low-Fat Recipes for SPIN, In
Proceedings of the 7th SPIN Workshop, LNCS 1885,
pp. 287–321, 2000. Available from:
http://spinroot.com/spin/Workshops/ws00/18850290.pdf

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 28/42

http://spinroot.com/spin/Workshops/ws02/ruys_abs.pdf
http://spinroot.com/spin/Workshops/ws00/18850290.pdf

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Labeled Transition System (LTS)

Labeled transition system (LTS) is a variant of the
finite state automaton (FSA) model better suited for
modelling asynchronous systems (software)

They are a very simple model of concurrency and as
such they are simple to understand and there are
very few variants

We will use them in the course to demonstrate
concurrency related phenomena

The simplicity of model is intentional in order not to
focus too much on the modelling language but on the
concurrency related phenomenon at hand

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 29/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

LTSs (cnt.)

Because LTSs are so simple, modelling with them
can be cumbersome. We will later show how the LTS
model can be extended with features to make
modeling with them closer to Promela

Promela models also have all the same concurrency
phenomena as LTS based models

We will start introducing LTSs by recalling the
definition of finite state automata

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 30/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Finite State Automaton (recap)

Recall the definition of FSA from Lecture 2:

Definition 1 A (nondeterministic finite) automaton Ais a
tuple(Σ,S,S0

,∆,F), where

Σ is a finitealphabet,

S is a finite set ofstates,

S0 ⊆ S is the set ofinitial states,

∆ ⊆ S×Σ×S is thetransition relation
(no ε-transitions allowed), and

F ⊆ S is the set ofaccepting states.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 31/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Labeled Transition System (LTS)

Definition 2 A labeled transition system Lis a tuple
(Σ,S,s0

,∆), where

Σ is a finitealphabetnot containing the symbolτ,

S is a finite set ofstates,

S0 = {s0} wheres0 ∈ S is theinitial state, and

∆ ⊆ S×Σ∪{τ}×S is thetransition relation
(containing alsoτ-transitions).

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 32/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

LTS vs. FSA

Changes:

A new special symbol τ (“tau”), denoting an internal
action (also called the invisible action)

The alphabet Σ now specifies those visible actions
on which the LTS can synchronize with other LTSs

A single initial state s0

The transition relation also includes τ-transitions
internal to the component (these are almost but not
quite the same as ε-moves in some FSA models)

No final states (think of all the states being final)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 33/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

LTS vs. FSA (cnt.)

Why LTSs instead of FSAs?

FSA based models are more natural for synchronous
systems such as hardware, while LTS based models
are more natural for asynchronous systems such as
concurrent software

The main difference is the parallel composition
operator

f
(also called the asynchronous product) is

used to compose a system out of its components:
L = L1

f
L2

f
· · ·

f
Ln instead of using the synchronous

product (also called the intersection ∩):
A = A1×A2×·· ·×An.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 34/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Basic LTS Notation

Let L = (Σ,S,S0
,∆) be an LTS, s,s′ ∈ S, s0,s1, . . .sn ∈ S,

x1,x2, . . .xn ∈ Σ∪{τ}. We define:

s
x
−→ s′ iff (s,x,s′) ∈ ∆

s0
x1−→ s1

x2−→ s2
x3−→ ·· ·

xn−→ sn iff for all 1≤ i ≤ n:

si−1
xi−→ si

s
x1x2,...,xn
−−−−−→ s′ iff there are some s0,s1, . . . ,sn such that

s0 = s, sn = s′, and s0
x1−→ s1

x2−→ s2
x3−→ ·· ·

xn−→ sn

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 35/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Basic LTS Notation (cnt.)

s→ s′ iff for some σ ∈ (Σ∪{τ})∗ it holds that s
σ
−→ s′

s→ iff for some s′ it holds that s→ s′

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 36/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Basic LTS Notation (cnt.)

s
a
=⇒ s′ iff there is a∈ Σ and s0,s1,s2,s3 ∈ Ssuch that

s0 = s, s3 = s′, and s0
τ∗
−→ s1

a
−→ s2

τ∗
−→ s3

s0
a1=⇒ s1

a2=⇒ s2
a3=⇒ ···

an=⇒ sn iff for all 1≤ i ≤ n: ai ∈ Σ
and si−1

ai=⇒ si

s
a1a2,...,an
=====⇒ s′ iff there are some s0,s1, . . . ,sn such that

s0 = s, sn = s′, ai ∈ Σ, and s0
a1=⇒ s1

a2=⇒ s2
a3=⇒ ···

an=⇒ sn

s⇒ s′ iff for some σ ∈ Σ∗ it holds that s
σ
=⇒ s′

s⇒ iff for some s′ it holds that s⇒ s′

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 37/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Basic LTS Notation (cnt.)

L → iff for s0 it holds that s0 →

L ⇒ iff for s0 it holds that s0 ⇒

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 38/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Parallel Composition
f

Let’s now create an LTS L = (Σ,S,S0
,∆) by composing n

LTSs:
L1 = (Σ1,S1,S0

1,∆1),

L2 = (Σ2,S2,S0
2,∆2),

. . . ,

Ln = (Σn,Sn,S0
n,∆n)

in parallel:

L = L1
f
L2

f
· · ·

f
Ln

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 39/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Parallel Composition
f

(cnt.)

The intuition:

Pick an initial state from each LTS

Any process can do a τ-transition on its own, and
others remain in their current states during its
execution

If a is in the alphabet for several LTSs, all of them
must be able to perform it before it can be executed

When executing a, all LTSs with a in their
alphabet move, while all other LTSs remain in
their current states

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 40/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Definition of
f

Definition 3 Parallel composition L= L1
f
L2

f
· · ·

f
Ln is

an LTS(Σ,S,S0
,∆), where

Σ = Σ1∪Σ2∪·· ·∪Σn,

S= S1×S2×·· ·×Sn
(states of the parallel composition are tuples
s= (s1,s2, . . . ,sn)),

S0 = {(s0
1,s

0
2, · · · ,s

0
n)}

(a single initial state where each component LTSsLi
is in its initial state), and

∆ ⊆ S×Σ∪{τ}×S is thetransition relation, where:

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 41/42

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Definition of
f

(cnt.)

(s,x,s′) ∈ ∆ where
s= (s1,s2, . . . ,sn),
x∈ Σ∪{τ}, and
s′ = (s′1,s

′
2, . . . ,s

′
n) iff:

x = τ: there is 1≤ i ≤ n such that
(si,τ,s′i) ∈ ∆i and
s′j = sj for all 1≤ j ≤ n, when j 6= i.

x 6= τ: for every 1≤ i ≤ n:
(si,x,s′i) ∈ ∆i , when x∈ Σi and
s′i = si , when x 6∈ Σi .

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 42/42

	Spin and XSpin Installed
	Installing Yourself
	Advanced Promela
	Alternative Send/Receive Syntax
	More Promela Message Passing
	Other Channel Operations
	Rendezvous Communication
	Rendezvous Example
	Rendezvous Example (cnt.)
	Executability of Statements (recap)
	Advanced Promela - prom {atomic}
	Atomic Sequences (cnt.)
	Atomic - Examples
	Atomic Sequences - Details
	Advanced Promela - prom {d_step}
	Advanced Promela - prom {d_step} (cnt.)
	Example: prom {atomic} vs.{ }prom {d_step}
	No atomic vs.{ }prom {atomic} vs.{ }prom {d_step}
	prom {atomic} vs.{ }prom {d_step}
	Example: Check for Blocking
	A Word of Warning
	The Promela prom {timeout}
	Macros
	Macros (cnt.)
	prom {inline} - Poor Man's Procedures
	prom {inline} (cnt.)
	Advanced Modelling Tips
	Labeled Transition System (LTS)
	LTSs (cnt.)
	Finite State Automaton (recap)
	Labeled Transition System (LTS)
	LTS vs.{ }FSA
	LTS vs.{ }FSA (cnt.)
	Basic LTS Notation
	Basic LTS Notation (cnt.)
	Basic LTS Notation (cnt.)
	Basic LTS Notation (cnt.)
	Parallel Composition $�igparallel $
	Parallel Composition $�igparallel $ (cnt.)
	Definition of $�igparallel $
	Definition of $�igparallel $ (cnt.)

