
AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

T–79.4301 Parallel and
Distributed Systems (4 ECTS)

T–79.4301 Rinnakkaiset ja hajautetut järjestelmät (4 op)

Lecture 11
16th of April 2007

Keijo Heljanko
Keijo.Heljanko@tkk.fi

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 1/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Exam Info

The exam is on Tue 8th of May 2007, 13:00-16:00 in
lecture hall T1 in the CS building.

Remember to register for the exam in WWWTopi on
Fri 4th of May at the latest.

The exam will cover the material of Lectures 1-11
(Lecture 12 is not part of the exam requirements),
Tutorials 1-8, as well as the home exercises 1-3.
Material of Lecture 12 includes info about model
checking tools, and is available on course homepage.

If you have not received the ≥50% score from the
home exercises but still want to take the exam,
please contact the Lecturer first.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 2/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Exam Info (cnt.)

The questions will be available both in Finnish and in
English.

The preliminary plan is that the next exam is in
August/September, and the one after that is in
December.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 3/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Extending LTSs with Data

Sometimes it is convenient to extend the LTS model
with data in order to more conveniently model
Promela like languages.

We will sketch the idea below in an informal manner.

The idea is the following: Assume we have a system
with n LTS components Li, which manipulate m
global variables x j with a value range 0. . .r.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 4/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

ELTSs

The state vector of the extended LTS system (ELTS)
will consist of a tuple (s1,s2, . . . ,sn,v1,v2, . . . ,vm),
where si is the current local state of the component
Li and v j is the current value of the global variable x j.

The initial state will be extended to give initial values
for all the global variables.

For each global variable we can define some
operations, for example inc(x) to increment the
value of global variable x, dec(x) to decrement it,
and expressions like iszero(x) to check whether
the variable is zero. (Expressions must be side-effect
free.)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 5/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

ELTSs (cnt.)

Now we can for each local transition of the LTS add a
guard: a list of expressions evaluated using the
current values of the global variables. The guard will
evaluate to true iff all the expressions evaluate to
true.

A global transition will be enabled iff all guards of all
its component transitions evaluate to true.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 6/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

ELTSs (cnt.)

To update the global variables, each local transition
is also associated with a list of operations.

When a global transition is fired, each of the local
transitions participating in it will in their turn execute
its list of operations on the global variables.

The state of global variables obtained after all
operations have been executed is recorded as the
state reached after firing the global transition.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 7/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

ELTSs (cnt.)

It is fairly straightforward to include other data
manipulation features of Promela such as FIFOs and
all their expression and operations in an ELTS model.

The part that is hard to faithfully handle using ELTSs
are the atomic and d_step features of Promela.

There are many variants of the ELTS model, also
state machines variants (extended finite state
machines, EFSMs) are pretty common in the
literature.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 8/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Promela and EFSMs

Internally inside Spin all Promela programs are first
translated into (a Spin variant of) extended finite
state machines EFSMs.

Consider for example the Peterson’s Mutex algorithm
shown in the next slide.

Its EFSM can be produced in xspin using the feature
“View Spin automaton for each Proctype” available in
the run menu. The automaton is shown in the next
slide following the Promela code.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 9/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Promela: Peterson’s Mutex

bool turn, flag[2]; /* Code reformatted, old line numbers below */

byte cnt;

active [2] proctype P1()

{ pid i, j;

i = _pid; /* line 9 */

j = 1 - _pid;

again: flag[i] = true; /* line 12 */

turn = i;

!(flag[j] && turn == i) ->

cnt++; assert(cnt == 1); cnt--; /* line 16 */

flag[i] = false; /* line 18 */

goto again

}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 10/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

EFSM for Peterson’s Mutex

line 9

line 12

line 13

line 14

line 16

line 16

line 16

line 18

 flag[i] = 0

 (!((flag[j]&&(turn==i))))

 i = _pid

 cnt = (cnt+1)

 assert((cnt==1))

 flag[i] = 1

 cnt = (cnt-1)

 turn = i

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 11/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Notes on the Spin EFSM

Notice how all the control flow statements have been
removed, and all that remains is a state machine with
expressions added to the edges. For example, the
goto on line 19 has been removed. No goto
statements will exists in any Spin EFSMs. (The
picture is incomplete wrt. expressions.)

Spin has done some internal optimizations. For
example, there is no state of the automaton
corresponding to line 10 of the program. This
optimization is safe because j is a local variable.

At runtime there are two instances of the same
EFSM running.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 12/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Spin EFSMs

The statements appearing on edges of Spin EFSMs are:

Assignments

Assertions

Print statements

Send or Receive Statements

Promela expressions (expression statements)

All other features of Promela (if-statements,do-loops, go-

tos, etc.) are mapped to the structure of the state machine

part of the Spin EFSM.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 13/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Stuttering

Recall from Lecture 8 how past formulas were
defined over finite paths π = x0x1x2 . . .xn ∈ (2AP)∗.

By stuttering we mean a situation where π contains
two consecutive indexes such that xi = xi+1, i.e., two
consecutive states where the valuation of the atomic
propositions did not change.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 14/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Cause of Stuttering

In a parallel system quite a few things cause
stuttering. For example, firing an invisible transition τ
in some component not linked to the property under
model checking causes the τ to be observable by the
stuttering of current valuation of atomic propositions.

It has been argued, that a temporal logic should not
be able to observe the firing of such invisible
transitions, and temporal logics insensitive to
stuttering should be used instead.

In other words: If the logic is not insensitive to
stuttering, the verification results can differ due to a
single firing of an “invisible transition”, which conflicts
with our intuitive notion of what “invisible” means.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 15/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Stuttering Equivalence

Two sequences π and π′ are said to be stuttering
equivalent, if π can be obtained from π′ by executing
a finite sequence of stuttering removals and
insertions, where:

A stuttering removal takes two letters xixi+1 at
consecutive indexes of π′ such that xi = xi+1, and
replaces them in π′ with a single letter xi.

A stuttering insertion takes a single letter xi of π′

and replaces it in π′ with two copies: xixi.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 16/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Stuttering Invariance

A logic is said to be invariant under stuttering (also
called stuttering insensitive) iff for every formula ψ of
the logic and every pair of stuttering equivalent
words π,π′ it holds that π |= ψ iff π′ |= ψ.

In other words, a stuttering invariant logic cannot
distinguish two sequences which only differ by the
amount of stuttering in the sequences.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 17/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Stuttering and Past Safety Formulas

Recall the definition of past safety formulas from Lectures
8 and 9.

The set of past safety formulas in not stuttering
invariant because for example the formula
G(p ⇒ Yq) can distinguish two stuttering equivalent
words.

By disallowing the use of the “yesterday” operator Y
(and its variant Z) the logic becomes stuttering
invariant.

For future time logics, similarly, the “next” operator X
needs to be disallowed to obtain a stuttering invariant
logic.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 18/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Benefits of Stuttering Invariance

The partial order reductions algorithms such as the
ample sets employed by Spin require the
specification logic to be stuttering invariant.

For safety properties that are stuttering invariant, one
can synchronize the specification automaton with
only transitions that change the valuation of atomic
propositions. (You need to synchronize on all of them
in order not to introduce spurious counterexamples,
see Tutorial 8.)

Especially for run-time verification it can be hard to
synchronize with all actions of the system in an
efficient manner but limiting to observing changes to
the atomic propositions may be much more feasible.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 19/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Spin neverclaim

Spin has a feature called neverclaim which for
safety properties allows one to add an observer
automaton to the system that observes each
transition of the Promela program.

Thus essentially, the reachability graph of the
Promela program is synchronized with an observer
automaton essentially using the finite state machine
(not LTS!) synchronization construction.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 20/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example

The following neverclaim detects all safety violations of
the past safety formula G(p):
never {

do
:: true
:: !p -> break
od

}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 21/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Neverclaims

Each transition of the Promela program is followed
by one transition of a neverclaim.

The neverclaim can not change the state of the
system but can evaluate expressions based on the
current value of atomic propositions.

Thus a neverclaim can be seen as an EFSM which
does not contain any operations, just expressions.

Control flow is usually accomplished by using gotos.

If the end of a neverclaim is ever reached, Spin
reports an error.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 22/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Checking Safety with Neverclaims

Intuitively neverclaims accept behaviors of the
system that are counterexamples to the safety
property being model checked.

Thus any violation of a safety property expressible as
an NFA can easily be mapped to a neverclaim.

Neverclaims can also express liveness properties,
but handling those is outside the scope of this
course.

When using partial order reductions the neverclaims
used should be stuttering invariant, otherwise
counterexamples can be erroneously missed!

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 23/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Fairness

Fairness is a property of a system model often required
to prove liveness properties of systems. They place
additional constraints on what kind of looping (infinite)
behaviors of the system are allowed. The two main types
of fairness are:

Weak fairness: Each weakly fair transition of the
system is either disabled in infinitely many times or it
is taken infinitely many times.

Strong fairness: Each strongly fair transition of the
system that is enabled infinitely many times is also
fired infinitely many times.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 24/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Fairness (cnt.)

The rest of this lecture will be a demonstration, not part of

the exam requirements.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 25/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Fair P/T-nets

A fair P/T-net is a P/T-net with a fairness mapping
f : T 7→ {n,w,s}, where n stands for no fairness, w
stands for weak fairness, and s stands for strong
fairness.

By definition, all finite runs of a fair P/T-net are fair.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 26/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Fair P/T-nets (cnt.)

An infinite run of a P/T-net
σ = M0

t0−→ M1
t1−→ M2

t2−→ . . . is fair iff for each
transition t ∈ T :

f (t) = n: ⊤ - no requirements for σ,

f (t) = w: Either ti = t for infinitely many i ≥ 0, or
t 6∈ enabled(Mi) for infinitely many i ≥ 0.

f (t) = s: If t ∈ enabled(Mi) for infinitely many
i ≥ 0, then ti = t for infinitely many i ≥ 0.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 27/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Fair P/T-nets (cnt.)

It is easy to prove that every fair Petri net has a fair
run. (It is easy to define alternative notions of
fairness where this is not the case.)

A fair P/T-net satisfies a temporal logic formula ψ iff
π |= ψ holds for every fair run of the P/T-net.

The Maria model checker contains a direct support
for both weak and strong fairness constraints of fair
Petri nets.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 28/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Fair P/T-nets (cnt.)

If ψ is a safety formula, the satisfaction of formulas is
not affected by fairness.

In the case ψ is a liveness formula, fairness
constraints say that all runs of the system should
satisfy the liveness property, while we don’t care
what happens in the non-fair runs.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 29/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Fairness Example

Consider a system consisting of two processes,
where the first process wants to execute a single
local action in order to terminate.

If we do not assume anything about the scheduling
speeds of the two processes, we cannot prove that
the first process will eventually terminate, as the
second process can run in a loop without the first
process ever being scheduled.

If we make the single transition of the first process
weakly fair, then in all fair runs of the system the first
process will in fact terminate.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 30/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Uses of Fairness of Modelling

Often the different kinds of fairness are used in:

No fairness: Events controlled by the environment,
subroutines which might not terminate, etc.

Weak fairness: Transitions of the system fully
controlled by the running process, subroutines that
will terminate, exits from critical sections.

Strong fairness: Allocation of shared resources,
entries to the critical section, different scheduling
decisions by the scheduler, packet loss in a channel.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 31/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Implementing Fairness

Suppose that you have managed to prove that some
progress properties of the system hold under
fairness in the model, and the model needs to be
implemented in a programming language.

It want be very hard to implement fairness in practice!

For example, if some shared resources are allocated
in a strongly fair fashion, you basically have to
implement a scheduler (round-robin, etc.) to allocate
the resources in a way that is fair towards all
participants.

Weak fairness is often simpler as it is usually a
side-product of the operating system scheduler.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 32/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Implementing Fairness (cnt.)

Sometimes it is infeasible/impossible to implement a
scheduler.

There are several ways to overcome such problems,
which include:

Using timers/counters to detect when no progress
is being made and resorting to a backup scheme
when the timer fires / the counter indicates no
progress has been made in a long time.
Using randomization to make the probability of
not making progress small. (See for example
Ethernet CSMA/CD.)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 33/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Fairness Teaser

How would you implement a shared memory
multiprocessor memory system with n = 1024
processors using 230 cache lines worth of memory in
a fashion that guarantees progress for all processors
but is still of high performance? (Hint: There is no
easy answer...)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 34/34

	Exam Info
	Exam Info (cnt.)
	Extending LTSs with Data
	ELTSs
	ELTSs (cnt.)
	ELTSs (cnt.)
	ELTSs (cnt.)
	Promela and EFSMs
	Promela: Peterson's Mutex
	EFSM for Peterson's Mutex
	Notes on the Spin EFSM
	Spin EFSMs
	Stuttering
	Cause of Stuttering
	Stuttering Equivalence
	Stuttering Invariance
	Stuttering and Past Safety Formulas
	Benefits of Stuttering Invariance
	Spin prom {neverclaim}
	Example
	Neverclaims
	Checking Safety with Neverclaims
	Fairness
	Fairness (cnt.)
	Fair P/T-nets
	Fair P/T-nets (cnt.)
	Fair P/T-nets (cnt.)
	Fair P/T-nets (cnt.)
	Fairness Example
	Uses of Fairness of Modelling
	Implementing Fairness
	Implementing Fairness (cnt.)
	Fairness Teaser

