
AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

T–79.4301 Parallel and
Distributed Systems (4 ECTS)

T–79.4301 Rinnakkaiset ja hajautetut järjestelmät (4 op)

Lecture 1
15th of January 2007

Keijo Heljanko
Keijo.Heljanko@tkk.fi

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 1/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

T–79.4301 Parallel and Distributed Systems (4 ECTS)

Design methods for parallel and distributed systems:
modelling and verification.

The default language of the course is English.

Lectures: Mon 12:15–14:00 in T3, first Lecture on
15th of Jan.

Tutorials: Mon 14:15–15:00 in T3, first tutorial on
22nd of Jan.

Course homepage:
http://www.tcs.hut.fi/Studies/T-79.4301/

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 2/34

http://www.tcs.hut.fi/Studies/T-79.4301/

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Course Personnel

Lectures: Docent, Academy Research Fellow
Keijo Heljanko

Email: Keijo.Heljanko@tkk.fi
Homepage: http://www.tcs.hut.fi/~kepa/
Office hours: Wed 12-13, in T-B334

Tutorials: Tuomas Launiainen
Email: t794301-spring07@tcs.tkk.fi
News:
nntp://news.tky.hut.fi/opinnot.tik.rhj

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 3/34

http://www.tcs.hut.fi/~kepa/
nntp://news.tky.hut.fi/opinnot.tik.rhj

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Course requirements

To pass the course you have to:

Pass the exam. Preliminary exam date:
Tuesday, 8th of May 2007 at 13:00-16:00 in T1

Get enough points from home exercises:
≥ 50% of points from home exercises to pass,
≥ 80% of points gives +1 to exam grade.

The exercises should be done individually, no
exercise groups/sharing of solutions allowed.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 4/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Home exercise schedule

The deadlines are tight!

Monday 19.2 at 12:15 - Exercise 1 distributed

Monday 12.3 at 12:15 - Deadline of Exercise 1,
Exercise 2 distributed

Monday 26.3 at 12:15 - Deadline of Exercise 2,
Exercise 3 distributed

Monday 16.4 at 12:15 - Deadline of Exercise 3

The deadlines are tight!

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 5/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Course material

All material needed for the exam will be distributed
through Edita (Tilaa prujut!/Order Teaching
Materials!).

Material will mostly consist of the lecture slides.

Also some tutorial material will be added.

Most of the material will also be made available
through the course homepage.

There is no single book the course will be based on
but we can recommend a few related ones.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 6/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Course replacement

The course T–79.4301 Parallel and Distributed Systems
(4 ECTS) can be used to replace either:

T–79.179 Parallel and Distributed Digital Systems
(3 cr), or

T–79.231 Parallel and Distributed Digital Systems
(3 cr).

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 7/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Software failures

Software is used widely in many applications where a bug
in the system can cause large damage:

Safety critical systems: airplane control systems,
medical care, train signalling systems, air traffic
control, etc.

Economically critical systems: ecommerce systems,
Internet, microprocessors, etc.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 8/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Price of Software Defects

Two very expensive software bugs:

Intel Pentium FDIV bug (1994, approximately $500
million).

Ariane 5 floating point overflow (1996, approximately
$500 million).

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 9/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Pentium FDIV - Software bug in HW

Image c© CPU-World.com

4195835 - ((4195835 / 3145727) * 3145727) = 256

The floating point division algorithm uses an array of con-

stants with 1066 elements. However, only 1061 elements

of the array were correctly initialised.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 10/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Ariane 5

Exploded 37 seconds after takeoff - the reason was an

overflow in a conversion of a 64 bit floating point number

into a 16 bit integer.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 11/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

More Software Bugs

Prof. Thomas Huckle, TU München: Collection of
Software Bugs
http://www5.in.tum.de/~huckle/bugse.html

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 12/34

http://www5.in.tum.de/~huckle/bugse.html

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

The Cost of Software Defects

The national economic impacts of software defects are
significant. In the USA the cost of software defects has
been estimated to be $59 billion, that is 0.6% of the gross
domestic product.

Source: National Institute of Standards & Technology
(NIST): The Economic Impacts of Inadequate
Infrastructure for Software Testing
www.nist.gov/director/prog-ofc/report02-3.pdf

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 13/34

www.nist.gov/director/prog-ofc/report02-3.pdf

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Reducing the Cost

According to the report by NIST 1/3 of the software
defects could be avoided by using better software
development methodology.

In this course the major focus is on development methods

for parallel and distributed systems. The main focus is on

modelling and computer aided verification methods.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 14/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Finding Bugs in Parallel Systems

The principal methods for the validation of complex
parallel and distributed systems are:

Testing (using the system itself)

Simulation (using a model of the system)

Deductive verification (mathematical (manual) proof
of correctness, in practice done with computer aided
proof assistants/proof checkers)

Model Checking (≈ exhaustive testing of a model of
the system)

Use also good design methodology!

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 15/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Why is Testing Hard?

Testing should always be done! However, testing parallel
and distributed systems is not always cost effective:

Testing concurrency related problems is often done
only when rest of the system is in place
⇒ fixing bugs late can be very costly.

It is labour intensive to write good tests.

It is hard if not impossible to reproduce bugs due to
concurrency encountered in testing.
- Did the bug-fix work?

Testing can only prove the existence of bugs, not
their in-existence.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 16/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Simulation

The main method for the validation of hardware designs:

When designing new microprocessors, no physical
silicon implementation exists until very late in the
project.

Example: Intel Pentium 4 simulation capacity
(Roope Kaivola, talk at CAV05):

8000 CPUs
Full chip simulation speed 8 Hz
(final silicon > 2 GHz).
Amount of real time simulated before tape-out:
well under 5 minutes.

Consider using simulation/prototyping for software.
T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 17/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Deductive Verification

Proving things correct by mathematical means
(mostly invariants + induction).

Computer aided proof assistants used to keep you
honest (it will nag you if you’ve missed a case in you
proof) and to prove small sub-cases.

Very high cost, requires highly skilled personnel:
Only for truly critical systems.
HW examples: Pentium 4 FPU, Pentium 4
register rename logic (Roope Kaivola: 2 man
years, 2 ’time bomb’ silicon bugs found -
thankfully masked by surrounding logic)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 18/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Model Checking

In model checking every execution of the model of the
system is simulated obtaining a Kripke structure M
describing all its behaviours. M is then checked against a
system property ϕ:

Yes: The system functions according to the specified
property (denoted M |= ϕ).
The symbol |= is pronounced “models”,
hence the term model checking.

No: The system is incorrect (denoted M 6|= ϕ), a
counterexample is returned: an execution of the
system which does not satisfy the property.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 19/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Models and Properties

Modelling

Kripke

System Property

model
System

structure
Formalized

propertyModel checking

Formalization
of property

the model
Executing

M ϕM |= ϕ ?

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 20/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Benefits of Model Checking

In principle automated: Given a system model and a
property, the model checking algorithm is fully
automatic

Counterexamples are valuable for debugging

Already the process of modelling catches a large
percentage of the bugs: rapid prototyping of
concurrency related features

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 21/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Drawbacks of Model Checking

State explosion problem: Capacity limits of model
checkers often exceeded

Manual modelling often needed:
Model checker used might not support all
features of the implementation language
Abstraction needed to overcome capacity
problems

Reverse engineering of existing already implemented
systems to obtain models is time consuming and
often futile

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 22/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Model Checking in the Industry

Microprocessor design: All major microprocessor
manufacturers use model checking methods as a
part of their design process

Design of Data-communications Protocol Software:
Model checkers have been used as rapid prototyping
systems for validating new data-communications
protocols under standardisation. They’ve also been
used as verification tool of protocol implementations
(Bell Labs, Nokia)

Critical Software: NASA space program is currently
developing and using model checking technology for
verifying code used by the space program.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 23/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Modelling Languages

As a language describing system models we can for
example use:

Java programs,

UML (unified modelling language) state machines,

SDL (specification and description language),

Promela language (input language of the Spin model
checker),

Petri nets (model checkers from HUT: Maria, PROD),

process algebras, and

VHDL,Verilog, or SMV languages (mostly for HW
design).

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 24/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Choosing the Modelling Language

If the modelling language of choice has a well defined
semantics (i.e., it is possible to write an algorithm to
generate all the possible executions of the system), it is in
principle applicable as a modelling language.

The most important thing in choosing your modelling lan-

guage is the ease of modelling and the existence of a suf-

ficiently good model checker for it

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 25/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Modelling Language of this Course

In this course we will mainly be using the Promela
language because of the relative ease of modelling and
existence of a good model checker Spin for it.

Promela is a natural choice for data-communications pro-

tocol modelling.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 26/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Kripke Structures

Kripke structure is a fully modelling language
independent way of representing the behaviour of parallel
and distributed system.

Kripke structures are graphs which describe all the possi-

ble executions of the system, where all internal state in-

formation has been hidden, except for some interesting

atomic propositions.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 27/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example: Mutex - Kripke structure

L = {TRY0, TRY1}

L = {TRY0, NC1}

L = {TRY0, TRY1}

L = {NC0, NC1}

L = {NC0, TRY1}

L = {CS0, NC1} L = {NC0, CS1}

L = {CS0, TRY1} L = {TRY0, CS1}

s1 s2

s3s4

s7

s5 s6

s8

s0

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 28/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Kripke structure

Kripke structure is a directed graph, where:

The states of the graph are all possible reachable
states of the system.

There is an arc from state s to state s′ if and only if
(iff from now on) it is possible to move with an atomic
action from state s to the state s′.

The valuation L of each state contains exactly those
atomic propositions which hold in that state.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 29/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Formal Definition

Definition 1 Let AP be a finite set of atomic
propositions. Kripke structure is a four-tuple
M = (S,s0

,R,L), where

S is a finite set of states,

s0 ∈ S is the initial state (marked with a wedge),

R ⊆ S×S is the transition relation,
((s,s′) ∈ R is drawn as an arc froms to s′), and

L : S → 2AP is a valuation, i.e. a function which
maps each state to those atomic propositions which
hold in that state.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 30/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Kripke Structures and Automata

Kripke structures have a close relationship with finite
state automata (FSA) (recall from: T–79.1001/T-79.158
Introduction to Theoretical Computer Science):
The changes are the following:

labelling is on states instead of having labels on arcs,

alphabet Σ consists of the subsets of AP,

there is at most one arc between any two states, and

there is no definition of final states.
(All the states are final.)

It is easy to derive a FSA out of a Kripke structure.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 31/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example: The Mutex Automaton AM

s1 s2

s3s4

s7

s5 s6

s8

s0

si
All states are final.

{NC0, NC1}

{NC0, NC1}
{NC0, NC1}{NC0, NC1}

{TRY0, NC1} {NC0, TRY1}

{NC0, TRY1}

{CS0, TRY1} {CS0, TRY1}

{TRY0, TRY1} {NC0, CS1}

{TRY0, CS1} {TRY0, CS1}

{TRY0, NC1}

{TRY0, TRY1}{CS0, NC1}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 32/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Model Checking - Ingredients

A way of modelling the system conveniently -
modelling language

A way of describing all the behaviours of the system
model in a modelling language independent way -
Kripke structure

A way of specifying properties - assertions,
automata, regular expressions, temporal logics

An algorithm to check whether the property holds for
the system - model checker

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 33/34

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Main Topics for the Course

The rest of the course will concentrate especially on:

modelling of parallel and distributed systems,

specifying properties,

using model checkers to verify them, and

basic theoretical background of verification methods.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 34/34

	
ormalsize {T--79.4301 Parallel and Distributed Systems (4 ECTS)}
	Course Personnel
	Course requirements
	Home exercise schedule
	Course material
	Course replacement
	Software failures
	Price of Software Defects
	Pentium FDIV - Software bug in HW
	Ariane 5
	More Software Bugs
	The Cost of Software Defects
	Reducing the Cost
	Finding Bugs in Parallel Systems
	Why is Testing Hard?
	Simulation
	Deductive Verification
	Model Checking
	Models and Properties
	Benefits of Model Checking
	Drawbacks of Model Checking
	Model Checking in the Industry
	Modelling Languages
	Choosing the Modelling Language
	Modelling Language of this Course
	Kripke Structures
	Example: Mutex - Kripke structure
	Kripke structure
	Formal Definition
	Kripke Structures and Automata
	Example: The Mutex Automaton (mathcal {A}_M)
	Model Checking - Ingredients
	Main Topics for the Course

