Parallel and Distributed Systems
Tutorial 6 - Wed Mar 15, 2006 11:15 and Fri Mar 17, 2006 14:15

1. Consider the following three LTSs L_{1}, L_{2}, and L_{3} :

a) Compute the parallel composition $L=L_{1} \| L_{3}$.
b) Does $L=L_{1} \| L_{3}$ contain any conflicts? If it does, please give a list consisting of triples $\left(v, t, t^{\prime}\right)$, where: v is a global states of L where a conflict occurs and t, t^{\prime} are a pair of global transitions of $L_{1} \| L_{3}$ which are in conflict in v.
c) Does $L=L_{1} \| L_{3}$ contain any deadlock? If it does, please give a list of global states of L which are deadlocks.
d) Does $L=L_{1} \| L_{3}$ contain any livelocks? If it does, please give a lists global state of L in which a livelock exists.
e) Does $L=L_{1} \| L_{3}$ contain a pair of independent transitions? If it does, give two global transitions which are independent.
f) Give $\operatorname{traces}\left(L_{3}\right)$ as a list of sequences over Σ_{3}.
g) Give $\operatorname{traces}\left(L_{1}\right)$ as a regular expression.
h) Give a deterministic finite automaton accepting $\Sigma_{1}^{*} \backslash \operatorname{traces}\left(L_{2}\right)$.
i) Check whether $\operatorname{traces}\left(L_{1}\right) \subseteq \operatorname{traces}\left(L_{2}\right)$ using the automaton constructed in the previous step. If not, give a word in $\operatorname{traces}\left(L_{1}\right) \backslash$ traces $\left(L_{2}\right)$
