1. a) Because the concepts of a conflict, a deadlock and a livelock are defined only with respect to reachable states, we focus on the reachable state space of the parallel composition of L_{1} and L_{3} (shown below).

$\left(s_{0}, u_{4}\right)$
b) The parallel composition of L_{1} and L_{3} contains two conflicts at states $\left(s_{0}, u_{0}\right)$ and $\left(s_{0}, u_{1}\right)$, respectively:

$$
\begin{gathered}
\left(\left(s_{0}, u_{0}\right),\left(\left(s_{0}, a, s_{1}\right),\left(u_{0}, a, u_{2}\right)\right),\left(-,\left(u_{0}, \tau, u_{1}\right)\right)\right), \text { and } \\
\left(\left(s_{0}, u_{1}\right),\left(\left(s_{0}, a, s_{1}\right),\left(u_{1}, a, u_{3}\right)\right),\left(\left(s_{0}, b, s_{2}\right),\left(u_{1}, b, u_{4}\right)\right)\right) .
\end{gathered}
$$

(In the first case, the LTS L_{3} can choose between an a - and a τ transition; in the second case, L_{1} and L_{3} can synchronise on either a or b.)
c) The LTS $L_{1} \| L_{3}$ contains deadlocks in states $\left(s_{0}, u_{4}\right)$ and $\left(s_{1}, u_{3}\right)$, because these states have no successors.
d) Because $\left(s_{1}, u_{2}\right) \xrightarrow{\tau}\left(s_{1}, u_{2}\right) \xrightarrow{\tau^{*}}\left(s_{1}, u_{2}\right)$ holds, the LTS $L_{1} \| L_{3}$ has a livelock in state $\left(s_{1}, u_{2}\right)$.
e) Because neither L_{1} nor L_{3} "participates" in both of the global transitions $\left(-,\left(u_{0}, \tau, u_{1}\right)\right)$ (starting from the state $\left.\left(s_{0}, u_{0}\right)\right)$ and $\left(\left(s_{2}, c, s_{0}\right),-\right)$ (starting from the state $\left(s_{2}, u_{4}\right)$), these global transitions are independent.
f) $\operatorname{traces}\left(L_{3}\right)=\{a, b\}$.
g) $\operatorname{traces}\left(L_{1}\right)$ is given by the regular expression $\left((b c)^{*}\right) \cup\left((b c)^{*} a\right) \cup\left(b(c b)^{*}\right)$ (all words formed by tracing a path from s_{0} to s_{0}, from s_{0} to s_{1}, and from s_{0} to s_{2}, respectively).
h) The $\operatorname{LTS} L_{2}$ as an automaton with ε-transitions (all states are accepting):

Because t_{0} is the only initial state of the automaton, the initial state of the corresponding deterministic automaton is

$$
\left\{t \in\left\{t_{0}, t_{1}, t_{2}\right\} \mid t_{0} \xrightarrow{\varepsilon^{*}} t\right\}=\left\{t_{0}, t_{1}\right\} .
$$

The (reachable state space of) the deterministic automaton built from the above automaton is thus

(note that to complement the automaton with respect to the alphabet $\Sigma_{1}=\{a, b, c\}$, we have to use this alphabet already for determinisation, even though the alphabet of L_{2} includes only the symbols a and b).
Swapping the final and non-final states yields the automaton

i) The automaton in h) as an $\operatorname{LTS} \bar{L}_{2}$:

c
The parallel composition of L_{1} and \bar{L}_{2} :

Because \emptyset is a final state of the automaton corresponding to the LTS \bar{L}_{2}, and because the state $\left(s_{1}, \emptyset\right)$ is reachable from the initial state of
$L_{1} \| \bar{L}_{2}$, it follows that $\operatorname{traces}\left(L_{1}\right) \subseteq \operatorname{traces}\left(L_{2}\right)$ does not hold. A path from $\left(s_{0},\left\{t_{0}, t_{1}\right\}\right)$ to $\left(s_{1}, \emptyset\right)$ can be used to find a trace of L_{1} which is not a trace of L_{2} : for example, $a \in \operatorname{traces}\left(L_{1}\right) \backslash \operatorname{traces}\left(L_{2}\right)$.

