
T–79.4301 Spring 2006
Parallel and Distributed Systems
Tutorial 4 – Solutions

1. a) The goto statements in the model of the alternating bit protocol can
be replaced, for example, with do-loops as follows:

mtype = { msg0, msg1, ack0, ack1 };

chan to_sndr = [2] of { mtype };
chan to_rcvr = [2] of { mtype };

active proctype Sender()
{

do
:: to_rcvr!msg1;

to_sndr?ack1;
to_rcvr!msg0;
to_sndr?ack0

od
}

active proctype Receiver()
{

do
:: to_rcvr?msg1;

to_sndr!ack1;
to_rcvr?msg0;
to_sndr!ack0

od
}

b) To add data to the abstract messages sent by the Sender process to the
Receiver process, we refine the message channel to rcvr into a channel
for transporting messages that consist of a “tag” of type mtype and
the actual data (of type byte) associated with the message. (Because
the receiver does not send any data back to the sender, the type of
the to sndr channel need not be modified.) Furthermore, we add the
channels indata and outdata to model the interface via which the
protocol communicates with its environment that actually generates
and processes the data.

1

mtype = { msg0, msg1, ack0, ack1 };

chan to_sndr = [2] of { mtype };
chan to_rcvr = [2] of { mtype, byte };
chan indata = [0] of { byte };
chan outdata = [0] of { byte };

active proctype Sender()
{

byte data;
do
:: indata?data;

to_rcvr!msg1, data;
to_sndr?ack1;
indata?data;
to_rcvr!msg0, data;
to_sndr?ack0

od
}

active proctype Receiver()
{

byte data;
do
:: to_rcvr?msg1, data;

to_sndr!ack1;
outdata!data;
to_rcvr?msg0, data;
to_sndr!ack0;
outdata!data

od
}

c) Sequences of the requested form can be generated by the following
process:

active proctype Source()
{

do
:: indata!0
:: indata!1;

do
:: indata!2
od

od
}

d) [Unfortunately, there was an error in the exercise: the assertions were supposed to
be used to check that the sequence formed of the incoming messages received so far

2

can always be extended into a sequence which belongs to the language of the given
regular expression (equivalently, that the sequence of received messages belongs to
the language of the regular expression

(
(0)∗

)∪ (
(0)∗1(2)∗

)
). The following solution

is based on this interpretation.]

The following process receives messages from the channel outdata and
checks that every message received is either a 0 or a 1. After receiving a
1, the process enters an infinite loop and verifies that each subsequent
message received is a 2. (Note that the else statement in the if-
selection cannot be omitted; otherwise the process would block at the
selection if the received data differed from 1.)

active proctype Sink()
{

byte data;
do
:: outdata?data;

assert(data == 0 || data == 1);
if
:: data == 1 ->

do
:: outdata?data;

assert(data == 2)
od

:: else /* data == 0 */
fi

od
}

e) Analyzing the model consisting of the processes defined in b), c) and
d) reveals no errors:

$ spin -a d.pml
$ cc -o pan pan.c
$./pan
hint: this search is more efficient if pan.c is compiled -DSAFETY
(Spin Version 4.2.6 -- 27 October 2005)

+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid end states +

State-vector 48 byte, depth reached 116, errors: 0
151 states, stored

3

105 states, matched
256 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)

2.622 memory usage (Mbyte)

unreached in proctype Sender
line 19, state 10, "-end-"
(1 of 10 states)

unreached in proctype Receiver
line 32, state 10, "-end-"
(1 of 10 states)

unreached in proctype Source
line 43, state 10, "-end-"
(1 of 10 states)

unreached in proctype Sink
line 60, state 15, "-end-"
(1 of 15 states)

It is easy to see that the data transmission protocol is data independent,
i.e., the behaviour of the processes Sender and Receiver does not de-
pend on the actual data received via the channels indata and to rcvr,
respectively (both processes simply pass every data value received on
to another channel without modifying it).

Suppose that the data transmission protocol could lose or duplicate a
message such that the sequence of messages received by the Sink pro-
cess differs from the sequence generated by the Source process. Because
of data independence, we may assume that the protocol loses or dupli-
cates a 1 that is generated by the data source process. But then the
Sink process would receive a sequence of messages conforming to one
of the regular expressions (0)∗(2)∗ or (0)∗11(2)∗; however, one of the
assertions added to the Sink process would fail in such a case. Because
the assertions never fail, it follows that the model of the data transmis-
sion protocol cannot lose or duplicate messages sent from the sender to
the receiver.

f) To model the possibility of losing messages or acknowledgments sent be-
tween the sender and the receiver, we change the direct communication
between Sender and Receiver into communication with an additional
process that models the behaviour of an unreliable transmission chan-
nel. Whenever this new process receives a message from the sender
or an acknowledgment from the receiver, the process chooses nonde-
terministically whether the message should be passed on to the other

4

process. The model (without the Source and Sink processes, which
remain unchanged) is as follows:

mtype = { msg0, msg1, ack0, ack1 };

chan msgchan = [0] of { mtype, byte };
chan ackchan = [0] of { mtype };
chan to_sndr = [2] of { mtype };
chan to_rcvr = [2] of { mtype, byte };
chan indata = [0] of { byte };
chan outdata = [0] of { byte };

active proctype LossyChannel()
{

mtype msg;
byte data;
do
:: msgchan?msg, data -> to_rcvr!msg, data
:: msgchan?msg, data /* lose message */
:: ackchan?msg -> to_sndr!msg
:: ackchan?msg /* lose acknowledgment */
od

}

active proctype Sender()
{

byte data;
do
:: indata?data;

msgchan!msg1, data;
to_sndr?ack1;
indata?data;
msgchan!msg0, data;
to_sndr?ack0

od
}

active proctype Receiver()
{

byte data;
do
:: to_rcvr?msg1, data;

ackchan!ack1;
outdata!data;
to_rcvr?msg0, data;
ackchan!ack0;
outdata!data

od
}

5

(Actually, the effect of “losing” messages could be modelled without
adding a new process to the model by adding nondeterminism directly
into the Sender and Receiver processes—in effect, making the processes
choose nondeterministically whether to actually send anything to the
other process. This is a common technique that can be used for opti-
mising the number of states in the model to be verified.)

g) The model with message loss has an error:

$ spin -a f.pml
$ cc -o pan pan.c
$./pan
hint: this search is more efficient if pan.c is compiled -DSAFETY
pan: invalid end state (at depth 31)
pan: wrote f.pml.trail
(Spin Version 4.2.6 -- 27 October 2005)
Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid end states +

State-vector 68 byte, depth reached 33, errors: 1
23 states, stored
1 states, matched
24 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)

2.622 memory usage (Mbyte)

Analyzing the error trail with Spin gives the following example of a
scenario of events that leads to a deadlock:

$ spin -c -t f.pml
proc 0 = LossyChannel
proc 1 = Sender
proc 2 = Receiver
proc 3 = Source
proc 4 = Sink
q\p 0 1 2 3 4

1 . . . indata!0
[...]

6

1 . . . indata!0
1 . indata?0
2 . msgchan!msg1,0
2 msgchan?msg1,0

spin: trail ends after 32 steps
[...]

In the final four steps of this execution, the Source process generates
a 0 and sends it to the sender process. The sender process sends the
0 to the unreliable channel, in which the message is lost. The Sender
then ends up waiting for an acknowledgment to a message that did not
reach the receiver process (which is still waiting for a message from the
sender).

h) The error in the model can be fixed by making Sender retransmit a mes-
sage if a timeout occurs. (The timeout construct is a special Promela
statement that becomes enabled if there is no other way for any of the
processes in the model to proceed.) Similarly, the Receiver is made to
resend the acknowledgment to the last message it received if it receives
a message with an incorrect tag (corresponding to a situation in which
the original acknowledgment was lost in transmission). The final model
with all processes is as follows:

mtype = { msg0, msg1, ack0, ack1 };

chan msgchan = [0] of { mtype, byte };
chan ackchan = [0] of { mtype };
chan to_sndr = [2] of { mtype };
chan to_rcvr = [2] of { mtype, byte };
chan indata = [0] of { byte };
chan outdata = [0] of { byte };

active proctype LossyChannel()
{

mtype msg;
byte data;
do
:: msgchan?msg, data -> to_rcvr!msg, data
:: msgchan?msg, data /* lose message */
:: ackchan?msg -> to_sndr!msg
:: ackchan?msg /* lose acknowledgment */
od

}

active proctype Sender()
{

7

byte data;
do
:: indata?data;

msgchan!msg1, data;
do
:: to_sndr?ack1 -> break
:: timeout -> msgchan!msg1, data
od;
indata?data;
msgchan!msg0, data;
do
:: to_sndr?ack0 -> break
:: timeout -> msgchan!msg0, data
od

od
}

active proctype Receiver()
{

byte data;
do
:: do

:: to_rcvr?msg0, data -> ackchan!ack0
:: to_rcvr?msg1, data -> break
od;
ackchan!ack1;
outdata!data;
do
:: to_rcvr?msg0, data -> break
:: to_rcvr?msg1, data -> ackchan!ack1
od;
ackchan!ack0;
outdata!data

od
}

active proctype Source()
{

do
:: indata!0
:: indata!1;

do
:: indata!2
od

od
}

active proctype Sink()
{

8

byte data;
do
:: outdata?data;

assert(data == 0 || data == 1);
if
:: data == 1 ->

do
:: outdata?data;

assert(data == 2)
od

:: else
fi

od
}

The Spin-generated verifier now confirms that this model of the pro-
tocol works as expected. The model has no deadlocks, and, by the
same argument as in step d), no message generated by the data source
process is lost or duplicated in the sequence of messages “seen” by the
data sink process.

$ spin -a h.pml
$ cc -o pan pan.c
$./pan
hint: this search is more efficient if pan.c is compiled -DSAFETY
(Spin Version 4.2.6 -- 27 October 2005)

+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid end states +

State-vector 68 byte, depth reached 120, errors: 0
387 states, stored
229 states, matched
616 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)

2.622 memory usage (Mbyte)

unreached in proctype LossyChannel
line 20, state 10, "-end-"
(1 of 10 states)

unreached in proctype Sender

9

line 39, state 22, "-end-"
(1 of 22 states)

unreached in proctype Receiver
line 58, state 22, "-end-"
(1 of 22 states)

unreached in proctype Source
line 69, state 10, "-end-"
(1 of 10 states)

unreached in proctype Sink
line 86, state 15, "-end-"
(1 of 15 states)

10

