T–79.4301 Parallel and Distributed Systems (4 ECTS)

T–79.4301 Rinnakkaiset ja hajautetut järjestelmät (4 op)

Lecture 9

2006.03.31

Keijo Heljanko

Keijo.Heljanko@tkk.fi

Semantics of Past Formulas (recap)

Recall from Lecture 8 that the semantics of past formulas are defined at each index *i* in a word $\pi \in (2^{AP})^*$ such that $\pi = x_0 x_1 x_2 \dots x_n$ as follows:

$$\begin{aligned} \pi^{i} &\models p & \Leftrightarrow \ p \text{ holds in } x_{i} \text{ for } p \in AP. \\ \pi^{i} &\models \neg \psi_{1} & \Leftrightarrow \ \pi^{i} \not\models \psi_{1}. \\ \pi^{i} &\models \mathbf{Y} \psi_{1} & \Leftrightarrow \ i > 0 \text{ and } \pi^{i-1} \models \psi_{1}. \\ \pi^{i} &\models \psi_{1} \lor \psi_{2} & \Leftrightarrow \ \pi^{i} \models \psi_{1} \text{ or } \pi^{i} \models \psi_{2}. \\ \pi^{i} &\models \psi_{1} \mathbf{S} \psi_{2} & \Leftrightarrow \ \exists \ 0 \leq j \leq i \text{ such that } \pi^{j} \models \psi_{2} \text{ and } \\ \pi^{n} &\models \psi_{1} \text{ for all } j < n \leq i. \end{aligned}$$

Alternative Semantic Definition

We can alternatively define the semantics of $\pi^i \models \mathbf{Y} \psi_1$ and $\pi^i \models \psi_1 \mathbf{S} \psi_2$ recursively as follows:

•
$$i = 0$$
:
• $\pi^{0} \not\models \mathbf{Y} \psi_{1}$
• $\pi^{0} \models \psi_{1} \mathbf{S} \psi_{2} \Leftrightarrow \pi^{0} \models \psi_{2}$
• $i > 0$:
• $\pi^{i} \models \mathbf{Y} \psi_{1} \Leftrightarrow \pi^{i-1} \models \psi_{1}$
• $\pi^{i} \models \psi_{1} \mathbf{S} \psi_{2} \Leftrightarrow \pi^{i} \models \psi_{2} \lor (\psi_{1} \land \mathbf{Y}(\psi_{1} \mathbf{S} \psi_{2}))$

The De Morgan rules are as follows:

$$\begin{array}{ll} \neg(\neg\psi_1) & \Leftrightarrow & \psi_1 \\ \neg(\psi_1 \lor \psi_2) & \Leftrightarrow & (\neg\psi_1) \land (\neg\psi_2) \\ \neg(\mathbf{Y}\psi_1) & \Leftrightarrow & \mathbf{Z}(\neg\psi_1) \\ \neg(\mathbf{O}\psi_1) & \Leftrightarrow & \mathbf{H}(\neg\psi_1) \\ \neg(\psi_1 \mathbf{S}\psi_2) & \Leftrightarrow & (\neg\psi_1) \mathbf{T}(\neg\psi_2) \end{array}$$

We also have the duals of the De Morgan rules above, e.g., $\neg(\mathbf{Z}\psi_1) \Leftrightarrow \mathbf{Y} \neg \psi_1$.

A formula $\mathbf{G}(\mathbf{\phi})$ ("always" $\mathbf{\phi}$), where $\mathbf{\phi}$ is a past formula is called a *past safety formula*. The semantics in a path $\pi = x_0 x_1 x_2 \dots x_n$ is defined as follows:

• $\pi \models \mathbf{G}(\mathbf{\phi})$ iff for all indexes $0 \le i \le n$ it holds that $\pi^i \models \mathbf{\phi}$.

or alternatively:

• $\pi \not\models \mathbf{G}(\mathbf{\phi})$ iff there is an index $0 \le i \le n$ such that $\pi^i \models \neg \mathbf{\phi}$.

Semantics in a Kripke Structure

- Recall the definition of a Kripke structure $M = (S, s^0, R, L)$ from Lecture 1.
- An execution σ of M is a sequence of states $\sigma = s_0 s_1 \dots s_n$ such that $s_0 = s^0$ (starts from the initial state), and $(s_{i-1}, s_i) \in R$ for all $1 \le i \le n$ (follows the arcs of the Kripke structure).
- An execution path π of M is a sequence of labels $\pi = x_0 x_1 \dots x_n$, such that $x_i = L(s_i)$ for some execution $\sigma = s_0 s_1 \dots s_n$ of M.

Semantics in a Kripke Structure (cnt.)

- The formula φ holds in M, denoted $M \models \varphi$ iff $\pi \models \varphi$ holds for every execution path π of M.
- Or alternatively: the formula φ does not hold in M, denoted $M \not\models \varphi$ iff there is an execution path

 $\pi = x_0 x_1 \dots x_n$ such that $\pi \models \neg \varphi$.

Such a path φ is called a *counterexample* to property φ, and the corresponding execution σ is called the counterexample execution.

Examples

- $G(\neg(cr_0 \wedge cr_1))$: processes 0 and 1 are never at the same time in the critical section.
- $G(starts \Rightarrow O(ignition))$: if the car starts the ignition key has been turned in the past.
- G(alarm ⇒ O(crash)): an alarm is given only if the system has crashed in the past.
- $G(alarm \Rightarrow (\neg reset S crash))$: an alarm is given only if the system has crashed in the past and no reset has been applied since.
- $G(alarm \Rightarrow Y(crash))$: if an alarm is given, the system crashed at the previous time step.

Implementing the semantics

- To find a safety violation, we need to observe the system state after each step it makes, and report an error at the first index *i* such that $\pi^i \models \neg \phi$.
- We do this by using two boolean variables for each subformula ψ. One bit to store the current value of ψ and another bit to remember the value of ψ at the previous time step, denoted by ψ'.
- We can do the calculation of the new values for all the bits as shown in the following slides.
- If after running the system for *i* steps the top-level formula $\neg \phi$ evaluates to true we need report that the past safety formula $G(\phi)$ is violated.

Implementing the semantics (cnt.)

- We will now evaluate the subformula value ψ in bottom-up order. Namely, the evaluation order must be such that both subformulas ψ₁ and ψ₂ of ψ have been evaluated at the current state s_i before ψ is evaluated.
- Each subformula ψ must also be evaluated exactly once at each s_i .
- The implementation is based on the alternative recursive semantic definition.
- To know the contents of the next two slides will not be part of the exam requirements.

The Translation at i = 0

Formula
$$\psi$$
Update rules at $i = 0$ $\psi \in AP$ $\psi = evaluate(s_i, \psi)$ $\neg \psi_1$ $\psi = \neg \psi_1$ $\psi_1 \lor \psi_2$ $\psi = \psi_1 \lor \psi_2$ $\mathbf{Y} \psi_1$ $\psi = \perp$ (false) $\psi_1 \mathbf{S} \psi_2$ $\psi = \psi_2$

Where $evaluate(s_i, \psi)$ evaluates the atomic proposition ψ in the current state s_i .

The Translation at i > 0

Formula
$$\psi$$
Update rules at $i > 0$ $\psi \in AP$ $\psi' = \psi; \psi = evaluate(s_i, \psi)$ $\neg \psi_1$ $\psi' = \psi; \psi = \neg \psi_1$ $\psi_1 \lor \psi_2$ $\psi' = \psi; \psi = \psi_1 \lor \psi_2$ $\mathbf{Y}\psi_1$ $\psi' = \psi; \psi = \psi_1 \lor \psi_2$ $\mathbf{Y}\psi_1$ $\psi' = \psi; \psi = \psi'_1$ $\psi_1 \mathbf{S}\psi_2$ $\psi' = \psi; \psi = \psi_2 \lor (\psi_1 \land \psi')$

Where $\psi'_1(\psi')$ is the value of $\psi_1(\psi)$ at the previous time step, and $evaluate(s_i, \psi)$ evaluates the atomic proposition ψ in the current state s_i .

History-variables Implementation

- The implementation of the history variables method can be made extremely fast.
- The memory overhead is tiny, just two bits per subformula, out of which the ψ' variables are just temporaries needed to evaluate the new ψ variables.
- It can be used as a fast, low-overhead runtime verification observer for safety properties. The same observer can also be used in combination with a model checker to check safety properties.
- Unfortunately the procedure is not implemented in most model checkers, so it has to be usually implemented by hand.

Liveness

- Liveness properties are properties of systems that are characterised by the intuitive formulation: "eventually something good happens".
- Another intuition is the following: For finite state systems all counterexamples demonstrating that a liveness property does not hold are of the form
 s⁰ \$\frac{p}{r}\$ s' \$\frac{l}{r}\$ s', where l is a non-empty execution of the system starting from state s' and ending in state s', an "nothing good" happens in l.
- Thus, intuitively, liveness properties specify what kinds of loops in the system behavior are allowed for correct implementations.

Liveness - Examples

- All executions of the system will pass through a state where *init_done* holds. (An eventuality property.)
- If a data request is sent to a server, the server will always eventually reply with the data. (A progress property: "always eventually" here means "after and arbitrary long but nevetheless a finite number of time steps".)

Liveness - Examples (cnt.)

- Both process 0 and process 1 are scheduled infinitely often.
- If both process 0 and process 1 are scheduled infinitely often then the request of process 0 to enter the critical section will always eventually be followed by process 0 entering the critical section. (This is often called model checking under fairness. Namely, if the assumption about fair scheduling holds, then the systems satisfies the required progress property.)
- If process 0 is in the critical section, it will leave the critical section after an unbounded but finite number of time steps.

Liveness

- A practical way of specifying liveness properties is to use the temporal logic LTL (linear temporal logic), or its extension PLTL (linear temporal logic with past).
- In LTL we use operators like:
 - **X** ψ_1 ("next"), the future time correspondent to $Y\psi_1$, and
 - $\psi_1 U \psi_2$ ("until"), the future time correspondent to $\psi_1 S \psi_2$.
- The semantics of LTL is outside the scope of this course.

Liveness (cnt.)

How to specify liveness properties in LTL and how to implement their model checking is covered in the course: T-79.5301 Reactive Systems

http://www.tcs.hut.fi/Studies/T-79.5301/

Spin has a full blown LTL model checker (as actually most model checkers do these days), so the tool support is available.

Model Based Testing

- Suppose you have verified safety properties of your system implementation G using model checking methods, and you want to implement it as a concrete program P.
- Can we use automated testing to increase our confidence that P satisfies all safety properties proved from the "golden design" model G?
- The answer is yes. The approach presented for doing so is called model based testing (MBT).

Simplified Testing Framework

To keep things simple we add a couple of restrictions needed to keep our intro to MBT short. We also keep the discussion a bit informal.

- Assume G is an LTS with alphabet Σ divided into inputs Σ_I and outputs Σ_O .
- Let both G and P behave in an input-internal-output loop for each test step i as follows:
 - 1. Wait for an input $a_i \in \Sigma_I$, all inputs are accepted and acted on.
 - Do some finite sequence of internal τ-moves. (Non-determinism allowed!)

3. Send an output $b_i \in \Sigma_O$.

Simplified Testing Framework

- Because of the assumptions above, any sequence $a = a_0 a_1 \dots a_n \in \Sigma_I^*$ is a valid input test sequence for both *G* and *P*.
- Now feed the test sequence to *P*. It produces the output sequence $b = b_0 b_1 \dots b_n \in \Sigma_Q^*$.
- If $a_0b_0a_1b_1...a_nb_n \notin traces(G)$ the test verdict is fail, otherwise pass.

Test Verdict Computation

- Intuitively, if $a_0b_0a_1b_1...a_nb_n \notin traces(G)$, then the concrete program P can after some prefix $a_0b_0a_1b_1...a_l$ with $l \leq n$ do b_l , and this cannot be matched by any execution of the golden design G.
- However, in this case P might also violate the safety properties proved for G, and therefore we'd better give a fail test verdict.

Test Verdict Computation (cnt.)

- To check whether $a_0b_0a_1b_1...a_nb_n \notin traces(G)$, we can see $a_0b_0a_1b_1...a_nb_n$ as an LTS A, and G as the specification LTS, and then check $A \leq_{tr} G$. If $A \leq_{tr} G$ we give test verdict pass, otherwise fail.
- As you may recall, checking $A \leq_{tr} G$ usually involves determinising G.
- Thus if *G* has |G| states, the determinised version can have exponentially more states, namely $2^{|G|}$.
- By employing the so called on-the-fly determinisation technique, the memory needed to check $A \leq_{tr} G$ can be bounded by the number of states |G|.

Model Based Testing

- The first commercial model based testing tools have become available.
 - For example, the testing tools by Conformiq (http://www.conformiq.com/) contain automated test generation and execution with MBT techniques.
 - For more on model based testing, see the course: T-79.5304 Formal Conformance Testing http://www.tcs.hut.fi/Studies/T-79.5304/

