
AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

T–79.4301 Parallel and
Distributed Systems (4 ECTS)

T–79.4301 Rinnakkaiset ja hajautetut järjestelmät (4 op)

Lecture 9
2006.03.31

Keijo Heljanko
Keijo.Heljanko@tkk.fi

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 1/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Semantics of Past Formulas (recap)

Recall from Lecture 8 that the semantics of past formulas
are defined at each index i in a word π ∈ (2AP)∗ such that
π = x0x1x2 . . .xn as follows:

πi |= p ⇔ p holds in xi for p ∈ AP.

πi |= ¬ψ1 ⇔ πi 6|= ψ1.

πi |= Yψ1 ⇔ i > 0 and πi−1 |= ψ1.

πi |= ψ1∨ψ2 ⇔ πi |= ψ1 or πi |= ψ2.

πi |= ψ1 S ψ2 ⇔ ∃ 0≤ j ≤ i such that π j |= ψ2 and
πn |= ψ1 for all j < n ≤ i.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 2/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Alternative Semantic Definition

We can alternatively define the semantics of πi |= Yψ1

and πi |= ψ1 S ψ2 recursively as follows:

i = 0:
π0 6|= Yψ1

π0 |= ψ1 S ψ2 ⇔ π0 |= ψ2

i > 0:
πi |= Yψ1 ⇔ πi−1 |= ψ1

πi |= ψ1 S ψ2 ⇔ πi |= ψ2∨ (ψ1∧Y(ψ1 S ψ2))

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 3/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

De Morgan Rules

The De Morgan rules are as follows:

¬(¬ψ1) ⇔ ψ1

¬(ψ1∨ψ2) ⇔ (¬ψ1)∧ (¬ψ2)

¬(Yψ1) ⇔ Z(¬ψ1)

¬(Oψ1) ⇔ H(¬ψ1)

¬(ψ1 S ψ2) ⇔ (¬ψ1)T (¬ψ2)

We also have the duals of the De Morgan rules above,

e.g., ¬(Zψ1) ⇔ Y¬ψ1.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 4/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Semantics in a Path

A formula G(ϕ) (“always” ϕ), where ϕ is a past formula is
called a past safety formula. The semantics in a path
π = x0x1x2 . . .xn is defined as follows:

π |= G(ϕ) iff for all indexes 0≤ i ≤ n it holds that
πi |= ϕ.

or alternatively:

π 6|= G(ϕ) iff there is an index 0≤ i ≤ n such that
πi |= ¬ϕ.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 5/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Semantics in a Kripke Structure

Recall the definition of a Kripke structure
M = (S,s0,R,L) from Lecture 1.

An execution σ of M is a sequence of states
σ = s0s1 . . .sn such that s0 = s0 (starts from the initial
state), and (si−1,si) ∈ R for all 1≤ i ≤ n (follows the
arcs of the Kripke structure).

An execution path π of M is a sequence of labels
π = x0x1 . . .xn, such that xi = L(si) for some
execution σ = s0s1 . . .sn of M.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 6/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Semantics in a Kripke Structure (cnt.)

The formula ϕ holds in M, denoted M |= ϕ iff π |= ϕ
holds for every execution path π of M.

Or alternatively: the formula ϕ does not hold in M,
denoted M 6|= ϕ iff there is an execution path
π = x0x1 . . .xn such that π |= ¬ϕ.

Such a path ϕ is called a counterexample to
property ϕ, and the corresponding execution σ is
called the counterexample execution.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 7/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Examples

G(¬(cr0 ∧ cr1)): processes 0 and 1 are never at the
same time in the critical section.

G(starts ⇒ O(ignition)): if the car starts the
ignition key has been turned in the past.

G(alarm ⇒ O(crash)): an alarm is given only if the
system has crashed in the past.

G(alarm ⇒ (¬reset S crash)): an alarm is given
only if the system has crashed in the past and no
reset has been applied since.

G(alarm ⇒ Y(crash)): if an alarm is given, the
system crashed at the previous time step.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 8/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Implementing the semantics

To find a safety violation, we need to observe the
system state after each step it makes, and report an
error at the first index i such that πi |= ¬ϕ.

We do this by using two boolean variables for each
subformula ψ. One bit to store the current value of ψ
and another bit to remember the value of ψ at the
previous time step, denoted by ψ′.

We can do the calculation of the new values for all
the bits as shown in the following slides.

If after running the system for i steps the top-level
formula ¬ϕ evaluates to true we need report that the
past safety formula G(ϕ) is violated.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 9/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Implementing the semantics (cnt.)

We will now evaluate the subformula value ψ in
bottom-up order. Namely, the evaluation order must
be such that both subformulas ψ1 and ψ2 of ψ have
been evaluated at the current state si before ψ is
evaluated.

Each subformula ψ must also be evaluated exactly
once at each si.

The implementation is based on the alternative
recursive semantic definition.

To know the contents of the next two slides will not
be part of the exam requirements.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 10/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

The Translation at i = 0

Formula ψ Update rules at i = 0
ψ ∈ AP ψ = evaluate(si,ψ)

¬ψ1 ψ = ¬ψ1

ψ1∨ψ2 ψ = ψ1∨ψ2

Yψ1 ψ = ⊥ (false)
ψ1 S ψ2 ψ = ψ2

Where evaluate(si,ψ) evaluates the atomic proposition ψ
in the current state si.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 11/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

The Translation at i > 0

Formula ψ Update rules at i > 0
ψ ∈ AP ψ′ = ψ; ψ = evaluate(si,ψ)

¬ψ1 ψ′ = ψ; ψ = ¬ψ1

ψ1∨ψ2 ψ′ = ψ; ψ = ψ1∨ψ2

Yψ1 ψ′ = ψ; ψ = ψ′
1

ψ1 S ψ2 ψ′ = ψ; ψ = ψ2∨ (ψ1∧ψ′)

Where ψ′
1 (ψ′) is the value of ψ1 (ψ) at the previous time

step, and evaluate(si,ψ) evaluates the atomic proposition

ψ in the current state si.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 12/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

History-variables Implementation

The implementation of the history variables method
can be made extremely fast.

The memory overhead is tiny, just two bits per
subformula, out of which the ψ′ variables are just
temporaries needed to evaluate the new ψ variables.

It can be used as a fast, low-overhead runtime
verification observer for safety properties. The same
observer can also be used in combination with a
model checker to check safety properties.

Unfortunately the procedure is not implemented in
most model checkers, so it has to be usually
implemented by hand.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 13/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Liveness

Liveness properties are properties of systems that
are characterised by the intuitive formulation:
“eventually something good happens”.

Another intuition is the following: For finite state
systems all counterexamples demonstrating that a
liveness property does not hold are of the form

s0 p
−→ s′

l
−→ s′, where l is a non-empty execution of the

system starting from state s′ and ending in state s′,
an “nothing good” happens in l.

Thus, intuitively, liveness properties specify what
kinds of loops in the system behavior are allowed for
correct implementations.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 14/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Liveness - Examples

All executions of the system will pass through a state
where init_done holds. (An eventuality property.)

If a data request is sent to a server, the server will
always eventually reply with the data. (A progress
property: “always eventually” here means “after and
arbitrary long but nevetheless a finite number of time
steps”.)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 15/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Liveness - Examples (cnt.)

Both process 0 and process 1 are scheduled
infinitely often.

If both process 0 and process 1 are scheduled
infinitely often then the request of process 0 to enter
the critical section will always eventually be followed
by process 0 entering the critical section. (This is
often called model checking under fairness. Namely,
if the assumption about fair scheduling holds, then
the systems satisfies the required progress property.)

If process 0 is in the critical section, it will leave the
critical section after an unbounded but finite number
of time steps.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 16/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Liveness

A practical way of specifying liveness properties is to
use the temporal logic LTL (linear temporal logic), or
its extension PLTL (linear temporal logic with past).

In LTL we use operators like:
Xψ1 (“next”), the future time correspondent to
Yψ1, and
ψ1 U ψ2 (“until”), the future time correspondent to
ψ1 S ψ2.

The semantics of LTL is outside the scope of this
course.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 17/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Liveness (cnt.)

How to specify liveness properties in LTL and how to
implement their model checking is covered in the
course: T–79.5301 Reactive Systems
http://www.tcs.hut.fi/Studies/T-79.5301/

Spin has a full blown LTL model checker (as actually
most model checkers do these days), so the tool
support is available.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 18/24

http://www.tcs.hut.fi/Studies/T-79.5301/

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Model Based Testing

Suppose you have verified safety properties of your
system implementation G using model checking
methods, and you want to implement it as a concrete
program P.

Can we use automated testing to increase our
confidence that P satisfies all safety properties
proved from the “golden design” model G?

The answer is yes. The approach presented for
doing so is called model based testing (MBT).

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 19/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Simplified Testing Framework

To keep things simple we add a couple of restrictions
needed to keep our intro to MBT short. We also keep the
discussion a bit informal.

Assume G is an LTS with alphabet Σ divided into
inputs ΣI and outputs ΣO.

Let both G and P behave in an input-internal-output
loop for each test step i as follows:
1. Wait for an input ai ∈ ΣI, all inputs are accepted

and acted on.
2. Do some finite sequence of internal τ-moves.

(Non-determinism allowed!)
3. Send an output bi ∈ ΣO.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 20/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Simplified Testing Framework

Because of the assumptions above, any sequence
a = a0a1 . . .an ∈ Σ∗

I is a valid input test sequence for
both G and P.

Now feed the test sequence to P. It produces the
output sequence b = b0b1 . . .bn ∈ Σ∗

O.

If a0b0a1b1 . . .anbn 6∈ traces(G) the test verdict is fail,
otherwise pass.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 21/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Test Verdict Computation

Intuitively, if a0b0a1b1 . . .anbn 6∈ traces(G), then the
concrete program P can after some prefix
a0b0a1b1al with l ≤ n do bl, and this cannot be
matched by any execution of the golden design G.

However, in this case P might also violate the safety
properties proved for G, and therefore we’d better
give a fail test verdict.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 22/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Test Verdict Computation (cnt.)

To check whether a0b0a1b1 . . .anbn 6∈ traces(G), we
can see a0b0a1b1 . . .anbn as an LTS A, and G as the
specification LTS, and then check A ≤tr G. If A ≤tr G
we give test verdict pass, otherwise fail.

As you may recall, checking A ≤tr G usually involves
determinising G.

Thus if G has |G| states, the determinised version

can have exponentially more states, namely 2|G|.

By employing the so called on-the-fly determinisation
technique, the memory needed to check A ≤tr G can
be bounded by the number of states |G|.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 23/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Model Based Testing

The first commercial model based testing tools have
become available.

For example, the testing tools by Conformiq
(http://www.conformiq.com/) contain automated test
generation and execution with MBT techniques.
For more on model based testing, see the
course: T–79.5304 Formal Conformance Testing
http://www.tcs.hut.fi/Studies/T-79.5304/

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 24/24

http://www.conformiq.com/
http://www.tcs.hut.fi/Studies/T-79.5304/

	Semantics of Past Formulas (recap)
	Alternative Semantic Definition
	De~Morgan Rules
	Semantics in a Path
	Semantics in a Kripke Structure
	Semantics in a Kripke Structure (cnt.)
	Examples
	Implementing the semantics
	Implementing the semantics (cnt.)
	The Translation at $i=0$
	The Translation at $i>0$
	History-variables Implementation
	Liveness
	Liveness - Examples
	Liveness - Examples (cnt.)
	Liveness
	Liveness (cnt.)
	Model Based Testing
	Simplified Testing Framework
	Simplified Testing Framework
	Test Verdict Computation
	Test Verdict Computation (cnt.)
	Model Based Testing

