
AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

T–79.4301 Parallel and
Distributed Systems (4 ECTS)

T–79.4301 Rinnakkaiset ja hajautetut järjestelmät (4 op)

Lecture 8
2006.03.24

Keijo Heljanko
Keijo.Heljanko@tkk.fi

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 1/23

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Data Abstraction (recap of Lecture 7)

The operations on x now become (in C syntax extended
with the non-deterministic choice of a boolean value *):

unsigned int x = 0; becomes bool y = true;

x++; becomes y = !y;

x--; becomes y = !y;

(x == 0) becomes
(y ? (* ? true : false) : false)

(x != 0) becomes
(y ? (* ? false : true) : true)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 2/23

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Data Abstraction (cnt.)

We get the abstract program by replacing each
occurrence of the variable x in the concrete program
by the syntactic replacement using the variable y as
shown in the previous slide.

Intuition on how the replacements were obtained:
Do case analysis on the potential values v of x
the current value of y might map to, and combine
the results with non-determinism:

Execute the concrete operation using the value
v for x to obtain a new value v’ for x.
Abstract the value of v’ to the domain of y to
obtain the new value of y.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 3/23

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Data Abstraction (cnt.)

Consider now the case:
(x == 0) becomes
(y ? (* ? true : false) : false)

Clearly if we know x is odd, the comparison
(x == 0) will evaluate to false

If we know x is even, in the original program x might
either have the value 0 or not.

In order to guarantee that the abstract version is able
to simulate the behavior of the concrete one in both
cases, we will have to do a non-deterministic choice
on evaluating (x == 0) to either true or false.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 4/23

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Data Abstraction (cnt.)

It is now easy to prove that after these syntactic
replacements the abstract program P′ containing y
will be able to simulate any execution of the concrete
program P containing x

If we can now prove that P′ ≤tr S for some
specification S, then also P ≤tr S.

Note how non-determinism was required in order to
perform the abstraction. Thus non-determinism is a
valuable feature in a modelling language.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 5/23

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Commonly used Abstractions

We can for example use the following predicates:

x is even or odd,

x is zero or non-zero,

x is NULL; and,

x is positive, zero, or negative.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 6/23

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Predicate Abstraction

We can use abstractions which use boolean variables to
record relationships between variables:

x_equals_z = (x == z), and

x_is_less_than_z = (x < z).

The last two talk about two variables, and thus can
actually replace both x and z with a single boolean
variable (the predicate) which is changed in the abstract
program whenever either x or z is changed in the
concrete program.

This is called predicate abstraction.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 7/23

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Abstraction (cnt.)

Similar abstraction methods can also be used when
manually modelling a system.

The main goal is to be able to show that when an
operation of the concrete program is performed, the
abstract program can always simulate it by the
abstract version of the operation.

If this is systematically done, then the traces of the
abstract program will always be a superset of the
traces of the concrete program.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 8/23

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Abstraction (cnt.)

Note that the data abstraction method described in
the previous slides does not preserve bisimulation.

However, because simulation is guaranteed, all
traces are preserved, and thus the abstraction
method can be used for checking trace containment.

We have only scratched the surface of abstraction
methods available.

More information about abstraction and other
methods used for software model checking can be
obtained from the Autumn 2006 edition of the course:
T–79.5305 Formal Methods (4 ECTS) P V.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 9/23

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Building Verification Models

When creating a verification model of a system the
following aspects need to be considered:

Which aspects of the design are important and need
verification:

What are the correctness requirements of the
design?
The requirements often tell a lot about which
parts of the system to model in order to capture
the relevant details. The modelled parts should
be exactly those of the required system relevant
to the property being verified.
Other detail should be discarded.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 10/23

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Building Verification Models (cnt.)

Model checking is usually best for verifying control
flow properties. Data manipulation not necessary for
control flow should usually be checked by other
means. Discard data in verification models when
possible.

We are looking for the smallest sufficient model to
allow verification of the requirement at hand.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 11/23

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Smallest Sufficient Model

State explosion is usually the main problem in any
model checking effort.

Abstraction is the most efficient way of alleviating the
state explosion problem.

Different properties of the system might in the end
need different verification models. (This can lead to
version control problems between different models!)

One should try to avoid unnecessary redundancy in
the model.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 12/23

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Avoiding Redundancy

Be careful with unnecessary data. Some examples:

Temporary variables: get rid of values stored in
temporaries not needed for the control flow.

Generating dummy data that is never used: a sender
in a protocol might generate data messages which
are never read in the model, just passed along to be
discarded in the end. Clearly such data should either
be removed or be finally checked in the receiver.

Sinks, sources, and filters: if model maintainability
(readability) allows, processes that only generate,
consume, or trivially filter messages can usually be
gotten rid of by modifying the model slightly.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 13/23

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Verification Flow

1. Formalize the critical properties to be verified.

2. Construct the smallest sufficient model(s) for the
verification task. Use abstraction: watch out for too
much detail/concrete model - state explosion might
occur.

3. Do the verification by choosing among different
alternative options available in the model checker.

4. If a counterexample is found: Either refine the model
to remove spurious counterexamples created by
abstraction, or modify the concrete system design
being modelled to meet its requirements if a real
problem with the design shows up.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 14/23

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Verification Flow (cnt.)

Phase 1. specifying the properties can be a major
headache for many systems. If requirements exist,
they are usually not formalized, so formalizing the
requirements is usually a major undertaking.

Experience has shown that actually most of the bugs
in real designs are found in phase 2. of the
verification flow even without starting the model
checker. (Modelling is efficient design/code review.)

Phase 3. can mean modelling changes if the
capacity of the available model checker is exceeded.

Phase 4. is in principle straightforward. However,
quite often several iterations are needed.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 15/23

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Safety Properties

Safety properties are properties of systems that are
characterised by the intuitive formulation: “nothing
bad happens”.

Another intuition is the following: If some execution σ
of the system breaks a safety property, then also all
longer executions of the system which begin with σ
break the safety property.

More formally, given an alphabet Σ, a safety property
S is a language S ⊆ Σ∗ such that: for all words σ 6∈ S
it holds that σσ′ 6∈ S for all σ′ ∈ Σ∗.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 16/23

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Safety - Examples

Examples of safety properties are:

It is always the case that two processes are never at
the same time in the critical section.

It is always the case that if the system reboots the
reset button has been pressed in the past.

It is always the case that if a message “ack0” arrives
from the receiver, then a messages “data0” has
been sent in the past from the sender.

It is always the case that a multiply command is
followed in three clock cycles by the multiply data.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 17/23

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Safety

Now given an LTS LS such that traces(LS) = S, we
can check whether for an implementation I it holds
that I ≤tr LS as shown earlier in this course.

The main problem with this approach is that it
requires one to compute the deterministic automaton

det(S) accepting the complement language of S,
which might be of exponential size in S.

This worst-case blow-up happens very seldom, and
thus the approach is actually quite useful in practice.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 18/23

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Run-time Verification

Safety properties have also another nice feature:
They can also be observed during the concrete
system runtime.

Thus synchronising with a safety property observer

det(S) can be easily simulated in the final
implementation of the system to either shutdown a
malfunctioning system or just to log (less crucial)
violations of safety properties.

This is called run-time verification and it can only be
done for safety properties.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 19/23

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

History-variables Method

Another possibility for run-time verification is to use
the so called history-variables method.

This approach is based on using a temporal logic
which is capable of only specifying safety properties
of the system.

For simplicity we use a state-based version of the
logic and assume we are dealing with a Kripke
structure (see Lecture 1) with a set of atomic
propositions AP.

The implementation needs to be able to evaluate for
each reachable state s whether an atomic
proposition p ∈ AP holds in s or not.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 20/23

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Past Formulas

The logic we use is a (proper) subset of the temporal
logic PLTL (linear temporal logic with past) and will be
defined using the following syntax:

p ∈ AP is a past formula,

if ψ1 is a past formula, then ¬ψ1, and Yψ1
(“yesterday”) are past formulas,

if ψ1,ψ2 are past formulas, then ψ1 ∨ ψ2 and
ψ1Sψ2 (“since”) are past formulas.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 21/23

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Shorthands

We will define the following shorthands:

⊤ = p∨¬p (“true”) for an arbitrary p ∈ AP,

⊥ = ¬⊤ (“false”),

ψ1∧ψ2 = ¬((¬ψ1)∨ (¬ψ2)),

Zψ1 = ¬(Y(¬ψ1)) (“weak yesterday”),

Oψ1 = ⊤S ψ1 (“once”),

ψ1 T ψ2 = ¬((¬ψ1)S (¬ψ2)) (“trigger”), and

Hψ1 = ⊥T ψ1 (“historically”).

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 22/23

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Semantics of Past Formulas

The semantics of past formulas is defined at each index i
in a word π ∈ (2AP)∗ such that π = x0x1x2 . . .xn as
follows:

πi |= p ⇔ p ∈ xi (i.e., p holds in xi) for p ∈ AP.

πi |= ¬ψ1 ⇔ πi 6|= ψ1.

πi |= Yψ1 ⇔ i > 0 and πi−1 |= ψ1.

πi |= ψ1∨ψ2 ⇔ πi |= ψ1 or πi |= ψ2.

πi |= ψ1 S ψ2 ⇔ ∃ 0≤ j ≤ i such that π j |= ψ2 and
πn |= ψ1 for all j < n ≤ i.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 23/23

	Data Abstraction (recap of Lecture 7)
	Data Abstraction (cnt.)
	Data Abstraction (cnt.)
	Data Abstraction (cnt.)
	Commonly used Abstractions
	Predicate Abstraction
	Abstraction (cnt.)
	Abstraction (cnt.)
	Building Verification Models
	Building Verification Models (cnt.)
	Smallest Sufficient Model
	Avoiding Redundancy
	Verification Flow
	Verification Flow (cnt.)
	Safety Properties
	Safety - Examples
	Safety
	Run-time Verification
	History-variables Method
	Past Formulas
	Shorthands
	Semantics of Past Formulas

