
AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

T–79.4301 Parallel and
Distributed Systems (4 ECTS)

T–79.4301 Rinnakkaiset ja hajautetut järjestelmät (4 op)

Lecture 3
2006.02.10

Keijo HeljankoKeijo.Heljanko�tkk.fi

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 1/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

The Spin Model Checker

The model checker Spin was designed at Bell Labs
by Gerard J. Holzmann (currently at NASA)

It received the ACM Software System award in 2002.
(Other winners: Unix, TeX, Smalltalk, Postscript,
TCP/IP)

Originally designed for data-communications
protocol analysis

The modelling language of Spin is called Promela

The Spin Website has more material:http://www.spinroot.
om/

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 2/52

http://www.spinroot.com/


AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Spin

Some of the reasons why Spin is successful

Very efficient implementation (using generated C
code)

Contains advanced model checking algorithms,
several of which are enabled by default

A graphical user interface available (Xspin)

Has been around for a while (15 years) and has been
solidly supported by Holzmann

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 3/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

The Acronyms

Spin = (Simple Promela Interpreter)

Promela = (Protocol/Process Meta Language)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 4/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

The Books

The version 1.0 of Spin was published in Jan 1991:
Gerard J. Holzmann: Design and Validation of
Computer Protocols, Prentice Hall, Nov 1990.
Book still available as PDF from:http://spinroot.
om/spin/Do
/Book91.html

A new book on Spin is much more up to date (v. 4.x):
Gerard J. Holzmann: The Spin Model Checker -
Primer and Reference Manual, Addison-Wesley,
Sep 2003, ISBN 0-321-22862-6.
For Book extras see:http://spinroot.
om/spin/Do
/Book_extras/index.html

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 5/52

http://spinroot.com/spin/Doc/Book91.html
http://spinroot.com/spin/Doc/Book_extras/index.html


AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Promela

The input language of the Spin model checker

Control flow syntax inherited from Dijkstra’s guarded
command language

Message passing primitives from Hoare’s CSP
language

Syntax for data manipulation from Kernighan and
Ritchie’s C language

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 6/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Modelling in Promela

This part is based on a nice Spin Beginners’ Tutorial by
Theo C. Ruys:http://spinroot.
om/spin/Do
/SpinTutorial.pdf

and The Spin Model Checker - Primer and Reference
Manual

A Promela model consists of a set of processes
communicating with each other through:

Global variables

Message queues of fixed capacity
(called channels in Promela)

Synchronization (rendezvous) on common actions

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 7/52

http://spinroot.com/spin/Doc/SpinTutorial.pdf


AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Promela Model

A Promela model consists of:

Type declarations

Channel declarations

Variable declarations

Process declarations

Optionally: the init process (the “main()” process)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 8/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

State of a Promela Model

The state of a Promela model consists of states of:

Running processes (program counter)

Data objects (global and local variables)

Message channels

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 9/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Finite State Models

Promela models are always finite state because

All data objects have a bounded domain

All message channels have a bounded capacity

The number of running processes is limited (max
255 processes)

The number of Promela statements in each process
is finite - Also no procedure mechanism exists

Thus analysis of Promela models is in theory decidable.

In practice the available memory and time is the limit.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 10/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Processes

A process type (pro
type) consists of

Name - name of the proctype

List of formal parameters - inputs given at start

Local variable declarations

Body - a sequence of statements: code of the
procedure

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 11/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Processes (Example)

In the following code the init process runs two instances
of the you_run proctypepro
type you_run(byte x){ printf("x = %d, pid = %d\n", x, _pid)}

/* leaving pids impli
it */init { run you_run(0);run you_run(1)}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 12/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Processes (Example cnt.)

We can use spin for random simulation as follows:$ spin ex1.pmlx = 0, pid = 1x = 1, pid = 23 pro
esses 
reated$ spin ex1.pml x = 1, pid = 2x = 0, pid = 13 pro
esses 
reated$ spin ex1.pmlx = 0, pid = 1x = 1, pid = 13 pro
esses 
reated
T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 13/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Processes (Example cnt.)

Note that Spin used indentation to show which process
printed what. (You can use spin -T to disable this.)
You can provide a seed to the Spin pseudorandom
number generator as follows:$ spin -n5 ex1.pmlx = 0, pid = 1x = 1, pid = 23 pro
esses 
reated
In Promela the init process gets alway the pid 0 but the
other processes dynamically allocate their pids

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 14/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Process

Is defined by pro
type definition

executes concurrently with all other processes, the
scheduling used is completely non-deterministic

There may be several processes of the same type

Local state:
Program counter
Contents of local variables

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 15/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Creating Processes

Processes are created using the run statement.
To be precise: run expression (with a side-effect).

Processes can also be created at the startup by
adding a
tive[numpro
s℄ in front of a pro
typeFoo() to create numpro
s instances of pro
typeFoo

Example:a
tive [2℄ pro
type you_run(){ printf("my pid is: %d\n", _pid)}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 16/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Creating Processes (cnt.)

Running the example:$ spin ex2.pmlmy pid is: 1my pid is: 02 pro
esses 
reated

$ spin ex2.pmlmy pid is: 0my pid is: 12 pro
esses 
reated
T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 17/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Variables and Types

The Promela basic types are (sizes match those of C).

Type Typical Rangebit 0,1bool false, truebyte 0..255
han 1..255mtype 1..255pid 0..255short −215..215−1int −231..231−1unsigned 0..232−1
T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 18/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example Declarations

bit x, y; /* two single bits, initially 0 */bool turn = true; /* boolean value, initially true */byte a[12℄; /* array of 12 bytes initialised to 0 */short b[4℄ = 89; /* array of 4, all initialised to 89 */int 
nt = 67; /* integer initialised to 67 */unsigned v : 5; /* unsigned stored in 5 bits */unsigned w : 3 = 5; /* value range 0..7, initially 5 */mtype n; /* uninitialised mtype (enumeration) variable */


han in = [3℄ of {short, byte, bool}; /* message 
hannelwith 3 messages 
apa
ity, messages have three fields */

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 19/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Mtype

The mtype (message type) keyword is a way of
introducing enumerations in Spin.
Example:mtype = { apple, pear, orange, banana };mtype = { fruit, vegetables, 
ardboard };

init { mtype n = pear; /* initialise n to pear */

printf("the value of n is %e\n", n)}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 20/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Mtype (cnt.)

Running the example in Spin:$ spin ex3.pmlthe value of n is pear1 pro
ess 
reated
T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 21/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Arrays and Records

Array indices start at 0. No multidimensional arrays.
Records (C style structs) are available through thetypedef keyword:typedef foo {short f1;byte f2;}

foo rr; /* variable de
laration */rr.f1 = 0;rr.f2 = 200;
T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 22/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Variables and Types

Variables need to be declared

Variables can be given value by:
Assignment
Argument passing (input parameters to
processes)
Message passing

Variables have exactly two scopes: global and
process local variables

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 23/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Data Manipulation

Most of C language arithmetic, relational, and logical
operations on variables are supported in Spin with the
same syntax (including comparison operators, bitshifts,
masking etc.)

When in doubt, try the “C” way of doing things and you will

probably be right.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 24/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Data Manipulation, Example

a
tive[1℄ pro
type foo() {int 
,d;printf("
:%d d:%d\n", 
, d);
++;
++;d = 
+1;d = d<<1;
 = 
*d;printf("
:%d d:%d\n", 
, d);
 = 
&3;d = d/5;printf("
:%d d:%d\n", 
, d);}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 25/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Data Manipulation, Example

Running the example we get:$ spin ex4.pml
:0 d:0
:12 d:6
:0 d:11 pro
ess 
reated
T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 26/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Conditional Expressions

C-style conditional expressions have to be replaced:a
tive[1℄ pro
type foo() {int a,b,
,d;b=1;
=2;d=3;#if 0a = b ? 
 : d; /* not valid */a = b -> 
 : d; /* not valid */#endifa = (b -> 
 : d); /* valid */printf("a:%d\n", a);}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 27/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Conditional Expressions (cnt.)

The parenthesis in "(foo -> bar : baz)" are vital!
The expression "foo -> bar : baz" will generate a
syntax error!$ spin ex5.pmla:21 pro
ess 
reated

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 28/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Promela Statements

The body of a process consists of a sequence of
statements

A statement can in current global state of the model
either be:

Executable: the statement can be executed in the
current global state
Blocked: the statement cannot be executed in the
current global state

Assignments are always executable

An expression is executable if it evaluates to
non-zero (true)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 29/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Executable Statements

0<1; /* Always exe
utable */x<5; /* Exe
utable only when x is smaller than 5 */3+x; /* Exe
utable if x is not -3 */(x > 0 && y > x); /* Exe
utable if x > 0 and y > x *//* Note: This is a single, atomi
statement! */

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 30/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Statements

The skip statement is always executable. It does
nothing but changes the value of the program
counter

The run statement is executable if a new process
can be created (Recall the 255 process limit.)

The printf statement is always executable (It is
used only for simulations, not in model checking.)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 31/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Statements (cnt.)

assert(<expr>);

The assert statement is always executable

If <expr> evaluates to zero, Spin will exit with an
error

The assert statements are handy for checking
whether certain properties hold in the current global
state of the model

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 32/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Intuition of the Promela Semantics

Promela processes execute in parallel

Non-deterministic scheduling of the processes

Processes are interleaved - statements of
concurrently running processes cannot occur
simultaneously

All statements are atomic - each statement is
executed without interleaving of other processes

Each process can be non-deterministic - have
several executable statements enabled. Only one
statement is selected for execution
nondeterministically

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 33/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

The if-statement

Now we proceed to non-atomic compound statements.
The if statement is also called the selection statement
and has gotten its syntax from Dijkstra’s guarded
command language.
Example:
han STDIN;a
tive[1℄ pro
type foo() {int 
;STDIN?
; /* Read a 
har from standard input */if:: (
 == -1) -> skip; /* EOF */:: ((
 % 2) == 0) -> printf("Even\n");:: ((
 % 2) == 1) -> printf("Odd\n");fi}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 34/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example: if-statement

$ spin ex6.pmla Odd1 pro
ess 
reated$ spin ex6.pmlb Even1 pro
ess 
reated$ spin ex6.pml1 pro
ess 
reated
T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 35/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

The if-statement (cnt.)

The if-statement has the general form:if:: (
hoi
e_1) -> statement_1_1; statement_1_2; ...:: (
hoi
e_2) -> statement_2_1; statement_2_2; ...:: ...:: (
hoi
e_3) -> statement_3_1; statement_3_2; ...fi
T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 36/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

The if-statement (cnt.)

The if-statement is executable if there is a
hoi
e_i statement which is executable. Otherwise
i is blocked.

If several 
hoi
e_i statements are executable, Spin
non-deterministically chooses one to be executed.

If 
hoi
e_i is executed, the execution then
proceeds to executing statement_i_1;statement_i_2; ... statement_i_n;

After this the program continues from the next
statement after the fi

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 37/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example 2: if-statement

An else branch is taken only if none of 
hoi
e_i is
executablea
tive[10℄ pro
type foo() {pid p = _pid;if:: (p > 2) -> p++;:: (p > 3) -> p--;:: else -> p = 0;fi;printf("Pid:%d, p:%d\n", _pid, p)}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 38/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example 2: if-statement (cnt.)

$ spin -T ex7.pmlPid:7, p:8Pid:0, p:0Pid:3, p:4Pid:9, p:8Pid:6, p:7Pid:4, p:3Pid:1, p:0Pid:5, p:6Pid:2, p:0Pid:8, p:910 pro
esses 
reated
T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 39/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

The do-statement

The way of doing loops in Promela

With respect to choices, a do statement behaves
same way as an if-statement

However, after one selection has been made thedo-statement repeats the choice selection

The (always executable) break statement can be
used to exit the loop and continue from the next
statement after the od

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 40/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

The do-statement (cnt.)

The do-statement has the general form:do:: (
hoi
e_1) -> statement1_1; statement1_2; ...:: (
hoi
e_2) -> statement2_1; statement2_2; ...:: ...:: (
hoi
e_3) -> statement3_1; statement3_2; ...od
T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 41/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example: For loop

a
tive[1℄ pro
type foo() {int i = 0;do:: (i < 10); printf("i: %d\n",i); i++;:: else -> breakod}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 42/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example: For loop (cnt.)

$ spin ex8.pmli: 0i: 1i: 2i: 3i: 4i: 5i: 6i: 7i: 8i: 91 pro
ess 
reated
T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 43/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example: Euclid

pro
type Eu
lid(int x, y){ do:: (x > y) -> x = x - y:: (x < y) -> y = y - x:: (x == y) -> breakod;printf("answer: %d\n", x)}
init { run Eu
lid(38, 14) }

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 44/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example: Euclid (cnt.)

Running the algorithm we get:$ spin eu
lid.pmlanswer: 22 pro
esses 
reated
T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 45/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example: Infamous goto-statement

pro
type Eu
lid(int x, y){ do:: (x > y) -> x = x - y:: (x < y) -> y = y - x:: (x == y) -> goto doneod;done:printf("answer: %d\n", x)}init { run Eu
lid(38, 14) }

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 46/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Communication

Message passing through message channels (first-in
first-out (FIFO) queues)

Rendezvous synchronization (handshake).
Syntactically appears as communication over a
channel with capacity zero

Both are defined by channels:
han <
han_name> = [<
apasity>℄ of{<t_1>, <t_1>,..., <t_n>};
where t_i are the types of the elements transmitted over

the channel.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 47/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Sending Messages

Consider the case where 
h is a channel with capasity
≥ 1

The send-statement:
h ! <expr_1>, <expr_2>,..., <expr_n>;

Is executable only if the channel is not full
Puts a message at the end of the message
channel 
h
The message consists of a tuple of the values of
the expressions <expr_i> - the types should
match the channel declaration

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 48/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Receiving Messages

Consider the case where 
h is a channel with capasity
≥ 1

The receive-statement:
h ? <var_1>, <var_2>,..., <var_n>;
Is executable only if the channel is not empty
Receives the first message of the message
channel 
h and fetches the individual fields of the
vars into variables <var_i> - the types should
match the channel declaration
An of the <var_i> can be replaced by a
constant. In that case the statement is executable
only if the first message matches the constants.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 49/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example: Alternating Bit Protocol

mtype = { msg0, msg1, a
k0, a
k1 };


han to_sndr = [2℄ of { mtype };
han to_r
vr = [2℄ of { mtype };a
tive pro
type Sender(){again:to_r
vr!msg1;to_sndr?a
k1;to_r
vr!msg0;to_sndr?a
k0;goto again}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 50/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example: Alternating Bit Protocol

a
tive pro
type Re
eiver(){again:to_r
vr?msg1;to_sndr!a
k1;to_r
vr?msg0;to_sndr!a
k0;goto again}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 51/52



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example: Alternating Bit Protocol

$ spin -
 -u10 alternatingbit.pmlpro
 0 = Senderpro
 1 = Re
eiverq\p 0 11 to_r
vr!msg11 . to_r
vr?msg12 . to_sndr!a
k12 to_sndr?a
k11 to_r
vr!msg01 . to_r
vr?msg02 . to_sndr!a
k02 to_sndr?a
k0-------------depth-limit (-u10 steps) rea
hed-------------
T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 52/52


	The Spin Model Checker
	Spin
	The Acronyms
	The Books
	Promela
	Modelling in Promela
	Promela Model
	State of a Promela Model
	Finite State Models
	Processes
	Processes (Example)
	Processes (Example cnt.)
	Processes (Example cnt.)
	Process
	Creating Processes
	Creating Processes (cnt.)
	Variables and Types
	Example Declarations
	Mtype
	Mtype (cnt.)
	Arrays and Records
	Variables and Types
	Data Manipulation
	Data Manipulation, Example
	Data Manipulation, Example
	Conditional Expressions
	Conditional Expressions (cnt.)
	Promela Statements
	Executable Statements
	Statements
	Statements (cnt.)
	Intuition of the Promela Semantics
	The prom {if}-statement
	Example: prom {if}-statement
	The prom {if}-statement (cnt.)
	The prom {if}-statement (cnt.)
	Example 2: prom {if}-statement
	Example 2: prom {if}-statement (cnt.)
	The prom {do}-statement
	The prom {do}-statement (cnt.)
	Example: For loop
	Example: For loop (cnt.)
	Example: Euclid
	Example: Euclid (cnt.)
	Example: Infamous prom {goto}-statement
	Communication
	Sending Messages
	Receiving Messages
	Example: Alternating Bit Protocol
	Example: Alternating Bit Protocol
	Example: Alternating Bit Protocol

