
AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

T–79.4301 Parallel and
Distributed Systems (4 ECTS)

T–79.4301 Rinnakkaiset ja hajautetut järjestelmät (4 op)

Lecture 10
2006.04.07

Keijo HeljankoKeijo.Heljanko�tkk.fi

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 1/28

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Other models of Concurrency

Process algebras - An algebraic way of compactly
specifying LTSs. Example specifying two
synchronizing LTSs:
I = ((a.(τ.c.0+b.0))

f

(a.b.0)), where “

f
” is parallel

composition, “.” is sequential composition, “+” in
non-deterministic choice, and “0” is a deadlocking
process. Lots of variants exist, the most well know
are CCS and CSP.

Petri nets - A model of concurrency developed by
C.A. Petri in 1962. Also lots of variants exist.

Extended finite state machines, SMV programs
(input language of the NuSMV model checker), . . .

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 2/28

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Petri nets

For another perspective into models of concurrency,
consider Petri nets. The class we use are called
place/transition nets (P/T-nets). A P/T-net is a tuple
N = (P,T,F,W,M0), where

P is a finite set of places,

T is a finite set of transitions,

F ⊆ (P×T)∪ (T ×P) is the flow relation,

W : F 7→ N\{0} is the arc weight mapping, and

M0 : P 7→ N is the initial marking.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 3/28

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Running Example

Recall the synchronization of LTSs from Lecture 6:

r2

r0

a τ

τ

L2 :

r1

s0

L1 : Σ1 = {a} Σ2 = {a}

s2

a

τ

s1

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 4/28

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Running Example as P/T net

s0 r0

s1 r2

t1 t2

t3 t4

s2 r1

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 5/28

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

The running Example

Places P = {s0,s1,s2, r0, r1, r2}.

Transitions T = {t1, t2, t3, t4}.

Flow relation F = {(s0, t1),(t1,s1),(r0, t2),(t2, r2),
(s1, t3),(r0, t3),(t3,s2),(t3, r1), (r2, t4),(t4, r2)}.

Arc weight mapping W(x,y) = 1 for all (x,y) ∈ F .
We use the convention that only arcs weights
W(x,y) > 1 are drawn next to the arc (x,y), i.e., the
default arc weight is 1.

Initial marking M0 = {s0 7→ 1, s1 7→ 0, s2 7→ 0,

r0 7→ 1, r1 7→ 0, r2 7→ 0}.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 6/28

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

From LTSs to P/T-nets

Intuition behind the mapping:

Local states of the components are mapped to
places.

Transitions of the Petri net consist of all legal ways of
synchronizing the local transitions of the
components. (Potential size blow-up here!)

The flow relation records what is the precondition
under which the synchronization can happen, and
what is the effect of the synchronization on the state
of each component.

The initial marking records the initial state of the
components.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 7/28

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

From LTSs to P/T-nets

Given L = L1

f

L2

f

· · ·

f

Ln with Li = (Σi,Si,S0
i ,∆i),

we get a P/T-net NL as follows:

P = S1∪S2∪· · ·∪Sn,

T ⊆ ∆1∪{−}×∆2∪{−}×·· ·×∆n∪{−}
(to be defined on the next slide),

F is the smallest relation satisfying for every
(P/T-net) transition g∈ T:

For all 1≤ i ≤ n, t j = (p, l , p′) ∈ ∆i : If
g = (. . . , t j , . . .) then (p,g) ∈ F and (g, p′) ∈ F .

M0(p) = 1 if p∈ S0
1∪S0

2∪· · ·∪S0
n, and M0(p) = 0

otherwise.
T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 8/28

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

From LTSs to P/T-nets (cnt.)

For all x∈ Σ∪{τ} and all
g∈ ∆1∪{−}×∆2∪{−}×·· ·×∆n∪{−} the
(P/T-net) transition g = (t1, t2, . . . , tn) ∈ T iff:

x = τ: there is 1≤ i ≤ n such that
ti = (si,τ,s′i) ∈ ∆i and
t j = − for all 1≤ j ≤ n, when j 6= i.
x 6= τ: for every 1≤ i ≤ n:
ti = (si,x,s′i) ∈ ∆i , when x∈ Σi and
ti = −, when x 6∈ Σi .

Finally we define W(x,y) = 1 for all (x,y) ∈ F .

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 9/28

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

From LTSs to P/T-nets (cnt.)

We now claim that reachability graphs of
L = L1

f

L2

f

· · ·

f

Ln and NL are the same.

However, to do so we have to define the behavior of
P/T-nets.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 10/28

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Behavior of P/T-nets

The state of a P/T-net consist of a marking
M : P 7→ N, which tells for each place how many
tokens (drawn as black dots) it contains.

The notation M(p) denotes the number of tokens in
place p.

In our running example M(p) ≤ 1 for all places
p∈ P, i.e., each place contains at most one token.
However, this is not required in general.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 11/28

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Behavior of P/T-nets

The preset of a node x∈ P∪T is denoted by •x and
defined to be: •x = {y∈ P∪T | (y,x) ∈ F}.
The preset of a node consist of those nodes from
which an arc to x exist. In our running example
•t3 = {s1, r0}.

The postset of a node x∈ P∪T is denoted by x•

and defined to be: x• = {y∈ P∪T | (x,y) ∈ F}.
The postset of a node consist of those nodes to
which an arc from x exist. In our running example
t3• = {s2, r1}.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 12/28

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Enabling of transitions

To simplify definitions, we extend W(x,y) to all pairs
(x,y) ∈ (P∪T)× (T ∪P) as follows: if (x,y) 6∈ F
then W(x,y) = 0.

A transition t ∈ T is enabled in marking M, denoted
t ∈ enabled(M), iff for all p∈ P : M(p) ≥W(p, t).
(All places p which are in the preset of t contain at
least the number of tokens specified by W(p, t).)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 13/28

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Firing of transitions

The marking M′ reached after firing t, denoted
M′ = fire(M, t), is defined for all p∈ P as:
M′(p) = M(p)−W(p, t)+W(t, p).
(First remove as many tokens as given by W(p, t)
from all places in the preset of t, and then add as
many tokens for all places in the postset of t as
denoted by W(t, p).)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 14/28

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Reachability graph

Analogous to the similar definition for LTSs (from end of
Lecture 5): Reachability graph G = (V,E,M0) is the
graph with the smallest sets of nodes V and edges E
such that:

M0 ∈V, where M0 is the initial marking of the net N,
and

if M ∈V then for all t ∈ enabled(M) it holds that
M′ = fire(M, t) ∈V and (M, t,M′) ∈ E.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 15/28

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Reachability graph (cnt.)

It is easy to define a P/T-net with an infinite
reachability graph.

A place p∈ P is defined to be k-bounded iff for all
reachable markings M ∈V it holds that M(p) ≤ k.

A net is defined to be k-bounded if all its places are
k-bounded

A net is defined to be unbounded (i.e., infinite state)
iff it is not k-bounded for any k∈ N.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 16/28

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

P/T-nets and Turing machines

It is not possible to simulate a Turing machine with a
P/T-net. Asking whether a marking M is reachable is
in fact decidable for P/T-nets (even with infinite
reachability graphs).

The algorithms used are quite involved, and we do
not know of an implementation of the theoretical
result in question.

There is a simple (but slow in the worst case)
algorithm which can compute which places of the net
are unbounded, called the coverability graph
algorithm.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 17/28

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Peterson’s Mutex (by W. Reisig)

C

E

G

D

A

F

M

N

L

B K

J

P

H
c d

e f

g

b

a

m k

p n

q
h

j

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 18/28

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

From 1-bounded P/T-nets to LTSs

A 1-bounded P/T-net N with |P| places can always
be converted to a synchronization of LTSs
LN = L1

f

L2

f

· · ·

f

Ln with n≤ |P| components which
have two states each. The reachability graph of LN
will be isomorphic to that of N.

The construction is slightly too complcated to show
here. The main trick is to use the set of transitions T
as the alphabet Σ in LN, and to make each Li
corresponding to a place p∈ P synchronize on all
labels t ∈ •p∪ p•.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 19/28

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

From P/T-nets to Promela

Suppose that the net N we are looking is
255-bounded. Holzmann suggests the following
scheme for translating P/T-nets (with W(x,y) = 1 for
all (x,y) ∈ F , a restriction which can be easily
removed) to Promela as shown in the next two slides.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 20/28

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

From P/T-nets to Promela (cnt.)

#define Pla
e byte /* < 256 tokens per pla
e */

Pla
e s0, s1, s2, r0, r1, r2;

#define inp1(x) (x>0) -> x--#define inp2(x,y) (x>0&&y>0) -> x--; y--

#define out1(x) x++#define out2(x,y) x++; y++

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 21/28

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

From P/T-nets to Promela (cnt.)

init{ atomi
 {s0=1;r0=1} /*initial marking*/do/* t1 */ :: atomi
 { inp1(s0) -> out1(s1) }/* t2 */ :: atomi
 { inp1(r0) -> out1(r2) }/* t3 */ :: atomi
 { inp2(s1,r0)-> out2(s2,r1)}/* t4 */ :: atomi
 { inp1(r2) -> out1(r2) }od}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 22/28

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

From P/T-nets to Promela (cnt.)

Actually, all atomi
 statements of the translation can
safely be replaced with d_step statements.

By using the LTS to P/T-net mapping first also LTSs
can be translated to Promela.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 23/28

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

From P/T-nets to Promela (cnt.)

It may be more efficient to use a Petri net model
checker such as PROD
(http://www.t
s.hut.fi/Software/prod/)
to do the model checking as for example the partial
order reductions in Spin are not really effective for
the model obtained from the translation.
(The concurrency of the model is hidden inside the
data manipulation of a single process.)

Another Petri net model checker is Maria
(http://www.t
s.hut.fi/Software/maria/index.en.html).

Both of the tools actually use high-level Petri nets,
which contain extensions to deal with structured data

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 24/28

http://www.tcs.hut.fi/Software/prod/
http://www.tcs.hut.fi/Software/maria/index.en.html

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Structural Analysis via Example

We want to prove mutual exclusion of Peterson’s mutex
algorithm. The critical sections correspond to places E
and N, and thus our proof objective is:

M(E)+M(N) ≤ 1 (1)

We can easily check that the net satisfies the following
place invariants as they hold in the initial state and are
preserved by every transition:

M(C)+M(D)+M(E)+M(F) = 1 (2)
M(G)+M(H) = 1 (3)
M(L)+M(M)+M(N)+M(P) = 1 (4)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 25/28

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example (cnt.)

By linear algebra, we can sum up the invariants (2), (3),
and (4) to obtain a new invariant:

M(C)+M(D)+M(E)+M(F)+M(G)+

M(H)+M(L)+M(M)+M(N)+M(P) = 3 (5)

We need expressions on the markings which do not use
equality to a constant on the right hand side to proceed
further.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 26/28

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example (cnt.)

It is easy to check that the following equation holds in the
initial state and is preserved by every transition:

M(C)+M(F)+M(G)+M(M) ≥ 1 (6)

Next subtract (6) from (5), to get the result:

M(D)+M(E)+M(H)+M(L)+M(N)+M(P) ≤ 2 (7)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 27/28

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example (cnt.)

We also have:

M(D)+M(H)+M(L)+M(P) ≥ 1 (8)

When we subtract (7) from (6), we get the result:

M(E)+M(N) ≤ 1 (9)

Now, (8) is our proof objective (1), and thus we are done.
Therefore the mutual exclusion property holds for the
Peterson’s mutex algorithm.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2006 – 28/28

	Other models of Concurrency
	Petri nets
	Running Example
	Running Example as P/T net
	The running Example
	From LTSs to P/T-nets
	From LTSs to P/T-nets
	From LTSs to P/T-nets (cnt.)
	From LTSs to P/T-nets (cnt.)
	Behavior of P/T-nets
	Behavior of P/T-nets
	Enabling of transitions
	Firing of transitions
	Reachability graph
	Reachability graph (cnt.)
	P/T-nets and Turing machines
	Peterson's Mutex (by W.~Reisig)
	From 1-bounded P/T-nets to LTSs
	From P/T-nets to Promela
	From P/T-nets to Promela (cnt.)
	From P/T-nets to Promela (cnt.)
	From P/T-nets to Promela (cnt.)
	From P/T-nets to Promela (cnt.)
	Structural Analysis via Example
	Example (cnt.)
	Example (cnt.)
	Example (cnt.)

