12 Complexity of Search

- The "No Free Lunch" Theorem
- Combinatorial Phase Transitions
- Complexity of Local Search

12.1 The "No Free Lunch" Theorem

- Wolpert \& Macready 1997
- Basic content: All optimisation methods are equally good, when averaged over uniform distribution of objective functions.
- Alternative view: Any nontrivial optimisation method must be based on assumptions about the space of relevant objective functions. [However this is very difficult to make explicit and hardly any results in this direction exist.]
- Corollary: one cannot say, unqualified, that ACO methods are "better" than GA's, or that Simulated Annealing is "better" than simple Iterated Local Search. [Moreover as of now there are no results characterising some nontrivial class of functions \mathcal{F} on which some interesting method \mathcal{A} would have an advantage over, say, random sampling of the search space.]

I.N. \& P.O. Autumn 2006
 T-79.4201 Search Problems and Algorithms

The NFL theorem: definitions (2/4)

- An algorithm is any function a mapping samples to new points in the search space. Thus:

$$
a: \mathcal{D} \rightarrow X, \quad a(d) \notin d^{x} .
$$

- Note 1: The assumption $a(d) \notin d^{x}$ is made to simplify the performance comparison of algorithms; i.e. one only takes into account distinct function evaluations. Not all algorithms naturally adhere to this constraint (e.g. SA, ILS), but without it analysis is difficult.
- Note 2: The algorithm may in general be stochastic, i.e. a given sample $d \in \mathcal{D}$ may determine only a distribution over the points $x \in \mathcal{X}-d^{x}$.

The NFL theorem: definitions (3/4)

- A performance measure is any mapping Φ from cost value sequences to real numbers (e.g. minimum, maximum, average). Thus:

$$
\Phi: \mathscr{Y}^{*} \rightarrow \mathbb{R}
$$

where $\mathscr{Y}^{*}=\cup_{m} \mathscr{Y}^{m}$:

The NFL theorem: definitions (4/4)

- Finally, denote by $P\left(d_{m}^{y} \mid f, m, a\right)$ the probability distribution of value samples of size m obtained by using a (generally stochastic) algorithm a to sample a (typically unknown) function $f \in \mathcal{F}$.
- More precisely, such a sample is obtained by starting from some a-dependent search point $d^{x}(1)$, querying f for the value $d^{y}(1)=f\left(d^{x}(1)\right)$, using a to determine search point $d^{x}(2)$ based on ($\left.d^{x}(1), d^{y}(1)\right)$, etc., up to search point $d^{x}(m)$ and the associated value $d^{y}(m)=f\left(d^{x}(m)\right)$. The value sample d_{m}^{y} is then obtained by projecting the full sample d_{m} to just the y-coordinates.

I.N. \& P.O. Autumn 2006

T-79.4201 Search Problems and Algorithms

The NFL theorem: statement

Theorem
[NFL] For any value sequence d_{m}^{y} and any two algorithms a_{1} and a_{2} :

$$
\sum_{f \in \mathcal{F}} P\left(d_{m}^{y} \mid f, m, a_{1}\right)=\sum_{f \in \mathcal{F}} P\left(d_{m}^{y} \mid f, m, a_{2}\right)
$$

I.N. \& P.O. Autumn 2006

T-79.4201 Search Problems and Algorithms

The NFL theorem: corollaries

Corollary
[1] Assume the uniform distribution of functions over \mathcal{F}, $P(f)=1 /|\mathcal{F}|=|\mathcal{Y}|^{-|X|}$. Then for any value sequence $d_{m}^{y} \in \mathcal{Y}^{m}$ and any two algorithms a_{1} and a_{2} :

$$
P\left(d_{m}^{y} \mid m, a_{1}\right)=P\left(d_{m}^{y} \mid m, a_{2}\right) .
$$

Corollary
[2] Assume the uniform distribution of functions over \mathcal{F}. Then the expected value of any performance measure Φ over value samples of size m,

$$
E\left(\Phi\left(d_{m}^{y}\right) \mid m, a\right)=\sum_{d_{m}^{y} \in \mathcal{Y}^{m}} \Phi\left(d_{m}^{y}\right) P\left(d_{m}^{y} \mid m, a\right),
$$

is independent of the algorithm a used.

12.2 Combinatorial Phase Transitions

- "Where the Really Hard Problems Are" (Cheeseman et al. 1991)
- Many NP-complete problems can be solved in polynomial time "on average" or "with high probability" for reasonable-looking distributions of problem instances. E.g. Satisfiability in time $O\left(n^{2}\right)$ (Goldberg et al. 1982), Graph Colouring in time $O\left(n^{2}\right)$ (Grimmett \& McDiarmid 1975, Turner 1984).
- Where, then, are the (presumably) exponentially hard instances of these problems located? Could one tell ahead of time whether a given instance is likely to be hard?
- Early studies: Yu \& Anderson (1985), Hubermann \& Hogg (1987), Cheeseman, Kanefsky \& Taylor (1991), Mitchell, Selman \& Levesque (1992), Kirkpatrick \& Selman (1994), etc.

I.N. \& P.O. Autumn 2006

T-79.4201 Search Problems and Algorithms

Hard instances for 3-SAT (2/4)

Results:

- A distinct peak in median running times at about clauses-to-variables ratio $\alpha \approx 4.5$.
- Peak gets more pronounced for increasing $n \Rightarrow$ well-defined "delta" distribution for infinite n ?

Hard instances for 3-SAT (1/4)

- Mitchell, Selman \& Levesque, AAAI-92
- Experiments on the behaviour of the DPLL procedure on randomly generated 3 -cnf Boolean formulas.
- Distribution of test formulas:
- $n=$ number of variables
- $m=\alpha n$ randomly generated clauses of 3 literals, $2 \leq \alpha \leq 8$
- For sets of 500 formulas with $n=20 / 40 / 50$ and various α, Mitchell et al. plotted the median number of recursive DPLL calls required for solution.

I.N. \& P.O. Autumn 2006
 T-79.4201 Search Problems and Algorithms

Hard instances for 3-SAT (3/4)

- The runtime peak seems to be located near the point where 50% of formulas are satisfiable.
- The peak seems to be caused by relatively short unsatisfiable formulas.

Question: Is the connection of the running time peak and the satifiability threshold a characteristic of the DPLL algorithm, or a (more or less) algorithm independent "universal" feature?

The satisfiability transition (2/2)

The satisfiability transition (1/2)

Mitchell et al. (1992): The " 50% satisfiable" point or "satisfiability threshold" for 3-SAT seems to be located at $\alpha \approx 4.25$ for large n.

Kirkpatrick \& Selman (1994):

- Similar experiments as above for k-SAT, $k=2, \ldots, 6,10000$ formulas per data point.
- The "satisfiability threshold" α_{c} shifts quickly to larger values of α for increasing k.

```
I.N. & P.O. Autumn 2006
T-79.4201 Search Problems and Algorithms
```


Statistical mechanics of k-SAT (2/4)

Estimates of α_{c} for various values of k via "annealing approximation", "replica theory", and observation:

k	$\alpha_{\text {ann }}$	$\alpha_{\text {rep }}$	$\alpha_{\text {obs }}$
2	2.41	1.38	1.0
3	5.19	4.25	4.17 ± 0.03
4	10.74	9.58	9.75 ± 0.05
5	21.83	20.6	20.9 ± 0.1
6	44.01	42.8	43.2 ± 0.2

Statistical mechanics of k-SAT (3/4)

The "annealing approximation" means simply assuming that the different clauses are satisfied independently. This leads to the following estimate:

- Probability that given clause c is satisfied by random σ : $p_{k}=1-2^{-k}$.
- Probability that random σ satisfies all $m=\alpha n$ clauses assuming independence: $p_{k}^{\alpha n}$.
- Total number of satisfying assignments $=2^{n} p_{k}^{\alpha n} \triangleq S_{k}^{n}(\alpha)$.
- For large $n, S_{k}^{n}(\alpha)$ falls rapidly from 2^{n} to 0 near a critical value $\alpha=\alpha_{c}$. Where is α_{c} ?
- One approach: solve for $S_{k}^{n}(\alpha)=1$.

$$
\begin{aligned}
S_{k}^{n}(\alpha)=1 & \Leftrightarrow 2 p_{k}^{\alpha}=1 \\
& \Leftrightarrow \alpha=-\frac{1}{\log _{2} p_{k}}=-\frac{\ln 2}{\ln \left(1-2^{-k}\right)} \approx \frac{\ln 2}{2^{-k}}=(\ln 2) \cdot 2^{k}
\end{aligned}
$$

I.N. \& P.O. Autumn 2006

T-79.4201 Search Problems and Algorithms

I.N. \& P.O. Autumn 2006
 T-79.4201 Search Problems and Algorithms

Dynamics of local search

A WalkSAT run with $p=1$ ("focused random walk") on a randomly generated 3 -SAT instance, $\alpha=3, n=500$: evolution in the fraction of unsatisfied clauses (Semerjian \& Monasson 2003).

Some recent results and conjectures

- Barthel, Hartmann \& Weigt (2003), Semerjian \& Monasson (2003): WalkSAT with $p=1$ has a "dynamical phase transition" at $\alpha_{\mathrm{dyn}} \approx 2.7-2.8$. When $\alpha<\alpha_{\mathrm{dyn}}$, satisfying assignments are found in linear time per variable (i.e. in a total of cn "flips"), when $\alpha>\alpha_{\text {dyn }}$ exponential time is required.
- Explanation: for $\alpha>\alpha_{\mathrm{dyn}}$ the search equilibrates at a nonzero energy level, and can only escape to a ground state through a large enough random fluctuation.
- Conjecture: all local search algorithms will have difficulties beyond the so called "clustering transition" at $\alpha \approx 3.92-3.93$ (Mézard, Monasson, Weigt et al.)

Some WalkSAT experiments

For $p>1$, the $\alpha_{\text {dyn }}$ barrier for linear solution times can be broken (Aurell \& Kirkpatrick 2004; Seitz, Alava \& Orponen 2005).

Normalised (flips/n) solution times for finding satisfying assignments using WalkSAT, $\alpha=3.8 \ldots 4.3$.
Left: complete data; right: medians and quartiles.
Data suggest linear solution times for $\alpha \gg \alpha_{\mathrm{dyn}} \approx 2.7$.

```
I.N. & P.O. Autumn 2006
T-79.4201 Search Problems and Algorithms
```


WalkSAT optimal noise level?

Normalised solution times for WalkSAT with $p=0.50 \ldots 0.60$, $\alpha=4.10$...4.22.

WalkSAT sensitivity to noise

Cumulative solution time distributions for WalkSAT at $\alpha=4.20$ with $p=0.55$ and $p=0.57$.

RRT applied to random 3-SAT

- Similar results as for WalkSAT are obtained with the Record-to-Record Travel algorithm.
- In applying RRT to SAT, $E(s)=$ number of clauses unsatisfied by truth assignment s. Single-variable flip neighbourhoods.
- Focusing: flipped variables chosen from unsatisfied clauses. (Precisely: one unsatisfied clause is chosen at random, and from there a variable at random.) $\Rightarrow \mathrm{FRRT}=$ focused RRT.

I.N. \& P.O. Autumn 2006

T-79.4201 Search Problems and Algorithms

FRRT experiments (3-SAT)

Normalised solution times for FRRT, $\alpha=3.8 \ldots 4.3$.
Left: complete data; right: medians and quartiles.

FRRT linear scaling (1/2)

Cumulative solution time distributions for FRRT with $d=9$.

FRRT linear scaling (2/2)

Cumulative solution time distributions for FRRT with $d=7$.

Focused search as a contact process

80.0. Auamn 2006

Focused search as a contact process

T-79.4201 Search Problems and Algorithms
Focused search as a contact process

