T-79.4201 Search Problems and Algorithms

12 Complexity of Search

- The "No Free Lunch" Theorem.
- Combinatorial Phase Transitions
- Complexity of Local Search

I.N. & P.O. Autumn 2006

T-79.4201 Search Problems and Algorithms

The NFL theorem: definitions (1/4)

- ▶ Consider family \mathcal{F} of all possible objective functions mapping finite search space \mathcal{X} to finite value space \mathcal{Y} .
- A sample d from the search space is an ordered sequence of distinct points from X, together with some associated cost values from Y:

$$d = \{(d^{x}(1), d^{y}(1)), \dots, (d^{x}(m), d^{y}(m))\}.$$

Here m is the size of the sample. A sample of size m is also denoted by d_m , and its projections to just the x- and y-values by d_m^x and d_m^y , respectively.

▶ The set of all samples of size m is thus $\mathcal{D}_m = (\mathcal{X} \times \mathcal{Y})^m$, and the set of all samples of arbitrary size is $\mathcal{D} = \cup_m \mathcal{D}_m$.

T-79.4201 Search Problems and Algorithms

12.1 The "No Free Lunch" Theorem

- Wolpert & Macready 1997
- Basic content: All optimisation methods are equally good, when averaged over uniform distribution of objective functions.
- ▶ Alternative view: Any nontrivial optimisation method *must* be based on assumptions about the space of relevant objective functions. [However this is very difficult to make explicit and hardly any results in this direction exist.]
- ▶ Corollary: one cannot say, unqualified, that ACO methods are "better" than GA's, or that Simulated Annealing is "better" than simple Iterated Local Search. [Moreover as of now there are *no* results characterising some nontrivial class of functions 𝒯 on which some interesting method 𝒜 would have an advantage over, say, random sampling of the search space.]

I.N. & P.O. Autumn 2006

T-79.4201 Search Problems and Algorithms

The NFL theorem: definitions (2/4)

► An algorithm is any function a mapping samples to new points in the search space. Thus:

$$a: \mathcal{D} \to \mathcal{X}, \quad a(d) \notin d^{x}.$$

- Note 1: The assumption a(d) ∉ d^x is made to simplify the performance comparison of algorithms; i.e. one only takes into account distinct function evaluations. Not all algorithms naturally adhere to this constraint (e.g. SA, ILS), but without it analysis is difficult.
- Note 2: The algorithm may in general be stochastic, i.e. a given sample $d \in \mathcal{D}$ may determine only a *distribution* over the points $x \in \mathcal{X} d^x$.

The NFL theorem: definitions (3/4)

A performance measure is any mapping Φ from cost value sequences to real numbers (e.g. minimum, maximum, average). Thus:

$$\Phi: \mathcal{Y}^* \to \mathbb{R},$$

where $\mathcal{Y}^* = \bigcup_m \mathcal{Y}^m$:

I.N. & P.O. Autumn 2006

T-79.4201 Search Problems and Algorithms

The NFL theorem: statement

Theorem

[NFL] For any value sequence d_m^y and any two algorithms a_1 and a_2 :

$$\sum_{f \in \mathcal{F}} P(d_m^y \mid f, m, a_1) = \sum_{f \in \mathcal{F}} P(d_m^y \mid f, m, a_2).$$

The NFL theorem: definitions (4/4)

- ▶ Finally, denote by $P(d_m^y \mid f, m, a)$ the probability distribution of value samples of size m obtained by using a (generally stochastic) algorithm a to sample a (typically unknown) function $f \in \mathcal{F}$.
- More precisely, such a sample is obtained by starting from some a-dependent search point $d^x(1)$, querying f for the value $d^y(1) = f(d^x(1))$, using a to determine search point $d^x(2)$ based on $(d^x(1), d^y(1))$, etc., up to search point $d^x(m)$ and the associated value $d^y(m) = f(d^x(m))$. The value sample d^y_m is then obtained by projecting the full sample d_m to just the y-coordinates.

I.N. & P.O. Autumn 2006

T-79.4201 Search Problems and Algorithms

The NFL theorem: corollaries

Corollary

[1] Assume the uniform distribution of functions over \mathcal{F} , $P(f) = 1/|\mathcal{F}| = |\mathcal{Y}|^{-|\mathcal{X}|}$. Then for any value sequence $d_m^y \in \mathcal{Y}^m$ and any two algorithms a_1 and a_2 :

$$P(d_m^y \mid m, a_1) = P(d_m^y \mid m, a_2).$$

Corollary

[2] Assume the uniform distribution of functions over \mathcal{F} . Then the expected value of any performance measure Φ over value samples of size m,

$$E(\Phi(d_m^y) \mid m, a) = \sum_{d_m^y \in \mathcal{Y}^m} \Phi(d_m^y) P(d_m^y \mid m, a),$$

is independent of the algorithm a used

12.2 Combinatorial Phase Transitions

- "Where the Really Hard Problems Are" (Cheeseman et al. 1991)
- Many NP-complete problems can be solved in polynomial time "on average" or "with high probability" for reasonable-looking distributions of problem instances. E.g. Satisfiability in time $O(n^2)$ (Goldberg et al. 1982), Graph Colouring in time $O(n^2)$ (Grimmett & McDiarmid 1975, Turner 1984).
- Where, then, are the (presumably) exponentially hard instances of these problems located? Could one tell ahead of time whether a given instance is likely to be hard?
- ► Early studies: Yu & Anderson (1985), Hubermann & Hogg (1987), Cheeseman, Kanefsky & Taylor (1991), Mitchell, Selman & Levesque (1992), Kirkpatrick & Selman (1994), etc.

I.N. & P.O. Autumn 2006

T-79.4201 Search Problems and Algorithms

Hard instances for 3-SAT (2/4)

Results:

- A distinct peak in median running times at about clauses-to-variables ratio $\alpha \approx 4.5$.
- Peak gets more pronounced for increasing n ⇒ well-defined "delta" distribution for infinite n?

Hard instances for 3-SAT (1/4)

- ▶ Mitchell, Selman & Levesque, AAAI-92
- ► Experiments on the behaviour of the DPLL procedure on randomly generated 3-cnf Boolean formulas.
- Distribution of test formulas:
 - n = number of variables
 - $m = \alpha n$ randomly generated clauses of 3 literals, $2 \le \alpha \le 8$
- ► For sets of 500 formulas with n = 20/40/50 and various α , Mitchell et al. plotted the median number of recursive DPLL calls required for solution.

I.N. & P.O. Autumn 2006

T-79.4201 Search Problems and Algorithms

Hard instances for 3-SAT (3/4)

- ► The runtime peak seems to be located near the point where 50% of formulas are satisfiable.
- ► The peak seems to be caused by relatively short unsatisfiable formulas.

Question: Is the connection of the running time peak and the satisfiability threshold a characteristic of the DPLL algorithm, or a (more or less) algorithm independent "universal" feature?

T–79.4201 Search Problems and Algorithms

The satisfiability transition (1/2)

Mitchell et al. (1992): The "50% satisfiable" point or "satisfiability threshold" for 3-SAT seems to be located at $\alpha \approx 4.25$ for large n.

I.N. & P.O. Autumn 2006

T-79.4201 Search Problems and Algorithms

Statistical mechanics of k-SAT (1/4)

Kirkpatrick & Selman, Science 1994

A "spin glass" model of a k-cnf formula:

- ▶ variables x_i ~ spins with states ± 1
- ightharpoonup clauses $c \sim k$ -wise interactions between spins
- truth assignment $\sigma \sim$ state of spin system
- ▶ Hamiltonian $H(\sigma)$ ~ number of clauses unsatisfied by σ
- ho α_c \sim critical "interaction density" point for "phase transition" from "satisfiable phase" to "unsatisfiable phase"

The satisfiability transition (2/2)

Kirkpatrick & Selman (1994):

- ▶ Similar experiments as above for k-SAT, k = 2, ..., 6, 10000 formulas per data point.
- ► The "satisfiability threshold" α_c shifts quickly to larger values of α for increasing k.

I.N. & P.O. Autumn 2006

T-79.4201 Search Problems and Algorithms

Statistical mechanics of k-SAT (2/4)

Estimates of α_c for various values of k via "annealing approximation", "replica theory", and observation:

k	$lpha_{ann}$	$lpha_{rep}$	$lpha_{obs}$
2	2.41	1.38	1.0
3	5.19	4.25	4.17 ± 0.03
4	10.74	9.58	$\boldsymbol{9.75 \pm 0.05}$
5	21.83	20.6	20.9 ± 0.1
6	44.01	42.8	43.2 ± 0.2

Statistical mechanics of k-SAT (3/4)

The "annealing approximation" means simply assuming that the different clauses are satisfied independently. This leads to the following estimate:

- Probability that given clause c is satisfied by random σ: $p_k = 1 2^{-k}$.
- Probability that random σ satisfies all $m = \alpha n$ clauses assuming independence: $p_{\nu}^{\alpha n}$.
- ▶ Total number of satisfying assignments = $2^n p_k^{\alpha n} \triangleq S_k^n(\alpha)$.
- ► For large n, $S_k^n(\alpha)$ falls rapidly from 2^n to 0 near a critical value $\alpha = \alpha_c$. Where is α_c ?
- ▶ One approach: solve for $S_k^n(\alpha) = 1$.

$$S_k^n(\alpha) = 1 \Leftrightarrow 2p_k^{\alpha} = 1$$
$$\Leftrightarrow \alpha = -\frac{1}{\log_2 p_k} = -\frac{\ln 2}{\ln(1 - 2^{-k})} \approx \frac{\ln 2}{2^{-k}} = (\ln 2) \cdot 2^k$$

I.N. & P.O. Autumn 2006

T-79.4201 Search Problems and Algorithms

12.3 Complexity of Local Search

- ▶ Good experiences for 3-SAT in the satisfiable region $\alpha < \alpha_c$: e.g. GSAT (Selman et al. 1992), WalkSAT (Selman et al. 1996).
- ► Focusing the search on unsatisfied clauses seems to be an important technique: in the (unsystematic) experiments in Selman et al. (1996), WalkSAT (focused) outperforms NoisyGSAT (unfocused) by several orders of magnitude.

Statistical mechanics of k-SAT (4/4)

It is in fact known that:

- ▶ A sharp satisfiability threshold α_c exists for all $k \ge 2$ (Friedgut 1999).
- ► For k = 2, $\alpha_c = 1$ (Goerdt 1982, Chvátal & Reed 1982). Note that 2-SAT \in P.
- ► For k = 3, 3.145 < α_c < 4.506 (lower bound due to Achlioptas 2000, upper bound to Dubois et al. 1999).
- ► Current best empirical estimate for k = 3: $\alpha_c \approx 4.267$ (Braunstein et al. 2002).
- ► For large k, $\alpha_c \sim (\ln 2) \cdot 2^k$ (Achlioptas & Moore 2002).

I.N. & P.O. Autumn 2006

T-79.4201 Search Problems and Algorithms

Dynamics of local search

A WalkSAT run with p = 1 ("focused random walk") on a randomly generated 3-SAT instance, $\alpha = 3$, n = 500: evolution in the fraction of unsatisfied clauses (Semerjian & Monasson 2003).

Some recent results and conjectures

- ▶ Barthel, Hartmann & Weigt (2003), Semerjian & Monasson (2003): WalkSAT with p=1 has a "dynamical phase transition" at $\alpha_{\text{dyn}}\approx 2.7-2.8$. When $\alpha<\alpha_{\text{dyn}}$, satisfying assignments are found in linear time per variable (i.e. in a total of cn "flips"), when $\alpha>\alpha_{\text{dyn}}$ exponential time is required.
- ▶ Explanation: for $\alpha > \alpha_{\text{dyn}}$ the search equilibrates at a nonzero energy level, and can only escape to a ground state through a large enough random fluctuation.
- ► Conjecture: all local search algorithms will have difficulties beyond the so called "clustering transition" at $\alpha \approx 3.92 3.93$ (Mézard, Monasson, Weigt et al.)

I.N. & P.O. Autumn 2006

T-79.4201 Search Problems and Algorithms

WalkSAT linear scaling

Cumulative solution time distributions for WalkSAT with p = 0.55.

Some WalkSAT experiments

For p > 1, the α_{dyn} barrier for linear solution times can be broken (Aurell & Kirkpatrick 2004; Seitz, Alava & Orponen 2005).

Normalised (flips/n) solution times for finding satisfying assignments using WalkSAT, $\alpha = 3.8...4.3$. Left: complete data; right: medians and quartiles.

Data suggest linear solution times for $\alpha \gg \alpha_{dvn} \approx 2.7$.

I.N. & P.O. Autumn 2006

T-79.4201 Search Problems and Algorithms

WalkSAT optimal noise level?

Normalised solution times for WalkSAT with p = 0.50...0.60, $\alpha = 4.10...4.22$.

WalkSAT sensitivity to noise

Cumulative solution time distributions for WalkSAT at $\alpha = 4.20$ with p = 0.55 and p = 0.57.

|ロト||4回ト||4厘ト|||連|| 少久(~

I.N. & P.O. Autumn 2006

T-79.4201 Search Problems and Algorithms

FRRT experiments (3-SAT)

Normalised solution times for FRRT, $\alpha = 3.8...4.3$. Left: complete data; right: medians and quartiles.

RRT applied to random 3-SAT

- ➤ Similar results as for WalkSAT are obtained with the Record-to-Record Travel algorithm.
- ▶ In applying RRT to SAT, E(s) = number of clauses unsatisfied by truth assignment s. Single-variable flip neighbourhoods.
- ► Focusing: flipped variables chosen from unsatisfied clauses. (Precisely: one unsatisfied clause is chosen at random, and from there a variable at random.) ⇒ FRRT = focused RRT.

I.N. & P.O. Autumn 2006

T-79.4201 Search Problems and Algorithms

FRRT linear scaling (1/2)

Cumulative solution time distributions for FRRT with d = 9.

FRRT linear scaling (2/2)

Cumulative solution time distributions for FRRT with d = 7.

□ ▶ ◆**□** ▶ ◆ 토 ▶ ◆ 토 ● 9 Q (?)

I.N. & P.O. Autumn 2006

T-79.4201 Search Problems and Algorithms

Focused search as a contact process

Focused search as a contact process

I.N. & P.O. Autumn 2006

T-79.4201 Search Problems and Algorithms

Focused search as a contact process

Focused search as a contact process

◆□ → ◆□ → ◆ = → ◆ = → り へ ○

I.N. & P.O. Autumn 2006

T-79.4201 Search Problems and Algorithms

Focused search as a contact process

Focused search as a contact process

I.N. & P.O. Autumn 2006