Solving MIPs

Lecture 9: Linear and integer programming algorithms

- Solving MIPs:

Relaxations
Branch and bound search

- Solving LPs:

Simplex algorithm

- A typical approach is use branch and bound search with a suitable relaxation.
- A relaxation of a problem removes constraints in order to get an easier to solve problem.
- Given a MIP P, its relaxation $R(P)$ is a problem satisfying the following conditions (for a minimization problem P): R1: for the optimal solution value z^{\prime} (value of the objective function) to $R(P)$ and the optimal solution value z^{*} to P, it holds that $z^{*} \geq z^{\prime}$. R2: if the optimal solution to $R(P)$ is feasible to P, it is optimal for P, R3: if $R(P)$ is infeasible, then so is P.
- A useful relaxation of a MIP P satisfying these condition is the linear relaxation $L R(P)$ of P which is obtained by removing the integrality constraints from P.
- $L R(P)$ satisfies conditions R1-R3 because feasible solutions of $L R(P)$ include all feasible solutions of P.
- Linear relaxation is computationally interesting because it is a strong relaxation which provides a global view on the constraints.

-79.4201 Search Problems and Algorithms

Branching

- Given a problem P branching creates new subproblems P_{1}, \ldots, P_{k} based on an optimal solution x^{*} to $R(P)$ that is not feasible to P.
- The subproblems P_{1}, \ldots, P_{k} must satisfy the properties:
- Every feasible solution to P is feasible to at least one of P_{1}, \ldots, P_{k}
- x^{*} is not feasible in any of $R\left(P_{1}\right), \ldots, R\left(P_{k}\right)$.
- For the linear relaxation, x^{*} is not feasible iff there is a variable x_{j} that has a fractional value x_{j}^{*} in x^{*}.
- For such a variable x_{j} with a fractional value x_{j}^{*}, we can create two subproblems:
- one with the additional constraint $x_{j} \leq\left\lfloor x_{j}^{*}\right\rfloor ;$
- one with the additional constraint $x_{j} \geq\left\lfloor x_{j}^{*}\right\rfloor+1$.
- The two subproblems obtained in this way satisfy the two conditions above.

Example.

Branch and Bound search using linear relaxation
$\min -8 x_{1}-11 x_{2}-6 x_{3}-4 x_{3}, 5 . x_{1}$

$$
0 \leqslant x_{i} \leqslant 1 \quad x_{i} \text { is integer } \quad i=1, \ldots, 4
$$

$2=-22$
$x_{1}=1, x_{2}=1,1$ (Solution to the $x_{3}=a x_{2} x_{1}=0 \quad 2$ ionean relaxation $L P(h)$

For Pr the
optiond solution
2x $2^{*} \geq-21,67$ but as in the alice inficiegers 2^{2} is also an
$2^{*} \geqslant-21$.
Thusis the found.

Improving Effectiveness

- Careful formulation
- Strong relaxations typically work well but are often bigger in size.
- Break symmetries.
- Multiple "big-M" values often lead to performance problems.
- Deciding which formulation works better needs often experimentation.
- Special branching rules

In many systems, for example, Special Ordered Sets are available.

- Cutting planes

These are constraints that are added to a relaxation to "cut off" the optimal relaxation solution x^{*}. Often are problem specific but there are also general techniques (e.g. Gomory cuts).

Bounding

- Bounding also uses relaxation.
- Suppose we have generated a feasible solution to some subproblem with solution value z^{*}. This could be optimal to a subproblem but we do not yet know whether it is optimal to P.
- Then for each subproblem P_{i} whose relaxation $R\left(P_{i}\right)$ has the optimal solution value $z_{i}^{\prime} \geq z^{*}$, we can cease examining this subproblem (bounding).
- This is because by $\mathrm{R} 1 z_{i}^{*} \geq z_{i}^{\prime}$ where z_{i}^{*} is the optimal (minimum) solution value for P_{i} and, hence, it is not possible to find a solution with a smaller solution value than z^{*} among the feasible solutions to P_{i}.

Solving Linear Relaxation

- Linear Relaxation of a MIP gives a linear program (LP)
- There are a number of well-known techniques for solving LPs
- Simplex method

The oldest and most widely used method with very mature implementation techniques. Worst-case time complexity exponential but seems to work extremely well in practice.

- Interior point methods

A newer approach; polynomial time worst case time complexity; implementation techniques advancing

- Next, Simplex method is reviewed as an example.

Simplex Method

- Assumes that the linear program is in standard form:

$$
\begin{aligned}
& \min \sum_{i=1}^{n} c_{i} x_{i} \text { s.t. } \\
& \sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, \quad i=1, \ldots, m \\
& x_{j} \geq 0, \quad j=1, \ldots, n
\end{aligned}
$$

- The basic idea: start from a basic feasible solution and look at the adjacent ones. If an improvement in cost is possible by moving to an adjacent solution, we do so. An optimal solution has been found if no improvement is possible.
- Next we briefly review the basic concepts needed:
- basic feasible solutions (bfs)
- move from one bfs to another (pivoting)
- the overall Simplex algorithm

Basic Feasible Solutions

- Assume an LP in standard form with m linear equations and n variables $x_{1}, \ldots, x_{n}, m<n$.
- A solution to the LP is an assignment of a real number to each variable x_{i} such that all equations are satisfied.
- A solution safisfying the following condition is called a basic solution:
- $n-m$ variables are set to 0 and
- the assignment for the other m variables (the basis) gives a unique solution to the resulting set of m linear equations.
- This means that a basic solution is obtained by choosing m variable as the basis, setting the other $n-m$ variables to zero and solving the resulting set of equations for the basic variables. If there is a unique solution, this is gives a basic solution.
- A basic feasible solution (bfs) is a basic solution such that every variable is assigned a value ≥ 0.

Moving from bfs to bfs

- When moving from one bfs to another the idea is to remove one variable from the basis and replace it with another. This is called pivoting.
- In Simplex this is organized as a manipulation of a tableau where, for instance, a set of equations

$3 x_{1}+2 x_{2}+x_{3}$	
$5 x_{1}+x_{2}+x_{3}+x_{4}$	$=3$
$2 x_{2}+5 x_{2}+x_{3}$	$=4$

is represented as

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
1	3	2	1	0	0
3	5	1	1	1	0
4	2	5	1	0	1

Tableaux

- Pivoting is handled by keeping the set of equations diagonalized with respect to the basic variables.
- This can be achieved using elementary row operations (Gaussian elimination): multiplying a row with a non-zero constant; adding a row to another.

Example.

Consider the set of equations

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
1	3	2	1	0	0
3	5	1	1	1	0
4	2	5	1	0	1

Given a basis $B=\left(x_{3}, x_{4}, x_{5}\right)$, we can transform the tableau to a diagonalized form w.r.t. it by multiplying Row 1 with -1 and adding it to Rows 2 and 3 :

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
1	3	2	1	0	0
2	2	-1	0	1	0
3	-1	3	0	0	1

Tableaux-cont'd

- We denote by $x_{i, j}$ the entry on the i th row and j th column in a tableau.
- Notice that in the diagonalized form column 0 gives the values of the basic variables in the bfs $x 0$ in question:

$$
x 0_{B(i)}=x_{i, 0}, i=1, \ldots, m
$$

where $B(i)$ denotes the column of the i th basic variable.

- Example. Consider the set of equations:

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
1	3	2	1	0	0
2	2	-1	0	1	0
3	-1	3	0	0	1

Given the basis $B=\left(x_{3}, x_{4}, x_{5}\right), B(1)=3, B(2)=4, B(3)=5$
and for its basic solution $x 0$ holds: $x 0_{3}=1, x 0_{4}=2, x 0_{5}=3$

T-79.4201 Search Problems and Algorithms

Pivoting

- In pivoting the tableau is brought to the diagonalized form w.r.t. the new basis using elementary row operations (Gaussian elimination):
- for the pivot row I, all elements are divided by the pivot element and, hence, the pivot element in the new tableau is 1 ;
- for other rows i, the resulting pivot row multiplied by $x_{i, j}$ is subtracted from the row, and, hence all elements in column j (except the pivot element) are 0 in the new tableau.
- This means that

$$
\begin{array}{ll}
x_{l, q}^{\prime}=\frac{x_{l, q}}{x_{l, j}} & q=0, \ldots, n \\
x_{i, q}^{\prime}=x_{i, q}-x_{l, q}^{\prime} x_{i, j} & i=1, \ldots, m ; i \neq l \\
& q=0, \ldots, n
\end{array}
$$

where $x_{i, j}$ and $x_{i, j}^{\prime}$ are the old and new tableaux, respectively.
and the case where x_{1} enters and x_{3} leaves the basis.
Now the pivot element is $x_{1,1}$ as $B(1)=3$.

Example

- Consider the tableau below and the pivot element $x_{1,1}$.

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
1	3	2	1	0	0
2	2	-1	0	1	0
3	-1	3	0	0	1

- After pivoting we obtain a new tableau:

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
$\frac{1}{3}$	1	$\frac{2}{3}$	$\frac{1}{3}$	0	0
$\frac{4}{3}$	0	$-\frac{7}{3}$	$-\frac{2}{3}$	1	0
$\frac{10}{3}$	0	$\frac{11}{3}$	$\frac{1}{3}$	0	1

where, e.g., $x_{2,2}=-1-2 \cdot \frac{2}{3}=-\frac{7}{3}$ and $x_{3,2}=3-(-1) \cdot \frac{2}{3}=\frac{11}{3}$.

- The new basis is $\left(x_{1}, x_{4}, x_{5}\right)$ and, hence,
$B(1)=1, B(2)=4, B(3)=5$.

Cost Function in the Tableau

- A cost function $z=\sum_{i=1}^{n} c_{i} x_{i}$ can be added as an extra equation $-z+\sum_{i=1}^{n} c_{i} x_{i}=0$ to the tableau (no need to add a column for z).
- To start, we need a bfs and to make zero the $c_{j} \mathrm{~s}$ for the basic variables.
- This can be done using elementary row operations.
- Consider the example with
x_{3}, x_{4}, and x_{5} as the basis.
- After transformation to the diagonalized form, subtract the resulting Rows 1, 2, 3 from
Row 0 , to get the desired form.

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
-6	-3	-3	0	0	0
1	3	2	1	0	0
2	2	-1	0	1	0
3	-1	3	0	0	1

Choosing the Leaving Variable

- The idea is to move to an adjacent bfs containing the entering variable x_{j}.
- In order not to miss an adjacent bfs we need to choose a pivot element $x_{k, j}$ with the smallest positive ratio $\frac{x 0_{k}}{x_{k, j}}$, that is, a $x_{k, j}$ such that

$$
\frac{x 0_{k}}{x_{k, j}}=\min _{\substack{i \\ x_{i, j}>0}}\left(\frac{x 0_{i}}{x_{i, j}}\right)
$$

where $x 0$ is the current bfs.

- Then the leaving variable is $B(k)$.

Example

- Consider the tableau

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
-6	-3	-3	0	0	0
1	3	2	1	0	0
2	2	-1	0	1	0
3	-1	3	0	0	1

- If x_{2} is the entering variable, the ratios are:

i	$\frac{\times 0_{i}}{x_{i \cdot 2}}$
1	$\frac{1}{2}$
2	$-\frac{2}{1}$
3	$\frac{3}{3}$

- Then the pivot element is $x_{1,2}$ because the smallest positive ratio $\frac{x 0_{i}}{x_{i, 2}}$ is $\frac{1}{2}$ for $i=1$ and the leaving variable is x_{3} as $B(1)=3$.

Simplex algorithm

procedure Simplex

opt := "no"; unbounded := "no";
while opt = "no" and unbounded = "no" do
if $c_{j} \geq 0$ for all j then opt $:=$ "yes"
else
choose any j such that $c_{j}<0$;
if $x_{i, j} \leq 0$ for all i then unbounded := "yes"
else

$$
\text { find } \min _{x_{i, j}>0}\left(\frac{x 0_{j}}{x_{i, j}}\right)=\frac{x 0_{k}}{x_{k, j}}
$$

and pivot on $x_{k, j}$

end if

end if
end while.

Further Issues

For an efficient implementation of Simplex there are a number issues that need to be handled:

- Finding the first bfs to start Simplex: artificial variable method, two-phase method, ...
- How to choose the entering variable: nonbasic gradient method (choosing the most negative c_{j}), greatest increment method, ...
- How to choose the pivot element in case of a tie: avoiding cycling, ...
- Here all c_{j} s are non-negative

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
-6	-3	-3	0	0	0
1	3	2	1	0	0
2	2	-1	0	1	0
3	-1	3	0	0	1

 and, hence, an optimal solution ($0, \frac{1}{2}, 0, \frac{5}{2}, \frac{3}{2}$) has been found with cost $\frac{9}{2}$ $\left(-z=-\frac{9}{2}\right)$.

Summary: Solving MIPs

- Experiment with different formulations as well as different systems and solving techniques to see which performs best.
- Avoid multiple "big-M" values.
- Try to break symmetries.
- Do not introduce unnecessary integer variables.
- Scale the coefficients in the constraint to as small as possible.

