General Linear Programs

- In a general linear program

$$
\begin{aligned}
& \min \quad \sum_{i=1}^{n} c_{i} x_{i} \quad \text { s.t. } \\
& \sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, \quad i=1, \ldots, m \\
& l_{j} \leq x_{j} \leq u_{j}
\end{aligned}
$$

inequalities with \leq or \geq can occur in addition to equalities ($=$), maximization can be used instead of minimization, and some of the variables can be unrestricted (do not have bounds).

- A general LP can be transformed to an equivalent (w.r.t. the set of original variables) but simpler form, for instance, to a canonical or standard form (introduced below).
- Two forms are equivalent (w.r.t. a set of variables) if they have the same set of optimal solutions (w.r.t. the set of variables) or are both infeasible or both unbounded.

T-79.9201 Seacren Poobens and Alorithms

Standard and Canonical Forms

An LP can be converted to standard or canonical form using the following transformations:

- Maximization of a function is equivalent to minimization of its opposite: $\max f\left(x_{1}, \ldots, x_{n}\right) \Leftrightarrow \min -f\left(x_{1}, \ldots, x_{n}\right)$
- An equality can be transformed to a pair of inequalities

$$
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \Leftrightarrow\left\{\begin{array}{l}
\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i} \\
\sum_{j=1}^{n}-a_{i j} x_{j} \geq-b_{i}
\end{array}\right.
$$

- An inequality can be transfrom to an equality by adding a slack (surplus) variable

$$
\begin{aligned}
& \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \Leftrightarrow\left\{\begin{array}{l}
\sum_{j=1}^{n} a_{i j} x_{j}+s=b_{i} \\
s \geq 0
\end{array}\right. \\
& \sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i} \Leftrightarrow\left\{\begin{array}{l}
\sum_{j=1}^{n} a_{i j} x_{j}-s=b_{i} \\
s \geq 0
\end{array}\right.
\end{aligned}
$$

The standard form is similar but all constraints are of the form $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}$.

Transformations-cont'd

- An unrestricted variable x_{j} can be eliminated using a pair of non-negative variables x_{j}^{+}, x_{j}^{-}by replacing x_{j} everywhere with $x_{j}^{+}-x_{j}^{-}$and imposing $x_{j}^{+} \geq 0, x_{j}^{-} \geq 0$.
- Non-positivity constraints can be expressed as non-negativity constraints: to express $x_{j} \leq 0$, replace x_{j} everywhere with $-y_{j}$ and impose $y_{j} \geq 0$.
- These transformations are sometimes needed when modelling if the tool used does not support a feature exploited in the LP model, for example, non-positive or unrestricted variables.

Example.

- Consider the problem of transforming the LP on the left to standard form. We illustrate the transformation in two steps.
$\max x_{2}-x_{1}$ s.t.
$3 x_{1}-x_{2} \geq 0$
$x_{1}+x_{2} \leq 6$
$-2 \leq x_{1} \leq 0$
- First:
turn maximization to minimization, turn the unrestricted variable x_{2} to a pair of non-negative variables and treat bounds as constraints to obtain: $\min -\left(x_{2}^{+}-x_{2}^{-}\right)+x_{1}$ s.t. $3 x_{1}-\left(x_{2}^{+}-x_{2}^{-}\right) \geq 0$ $x_{1}+\left(x_{2}^{+}-x_{2}^{-}\right) \leq 6$ $x_{1} \geq-2$ $x_{1} \leq 0$ $x_{2}^{+} \geq 0, x_{2}^{-} \geq 0$

T-79.4201 Seach Popdens and Aloorimms

Modelling

The diet problem: (a typical problem suitable for linear programming)

- Given
$a_{i, j}$: amount of the ith nutrient in a unit of the jth food item
r_{i} : yearly requirement of the ith nutrient
c_{j} : cost per unit of the jth food item
- Build a yearly diet (decide yearly consumption of n food items) such that it satisfies the minimal nutritional requirements for m nutriets and is as inexpensive as possible.
- LP solution: take variables x_{j} to represent yearly consumption of the j th food item

$$
\begin{aligned}
& \min \quad c_{1} x_{1}+\cdots+c_{n} x_{n} \text { s.t. } \\
& a_{1,1} x_{1}+\cdots+a_{1, n} x_{n} \geq r_{1} \\
& \vdots \\
& a_{m, 1} x_{1}+\cdots+a_{m, n} x_{n} \geq r_{m} \\
& x_{1} \geq 0, \ldots, x_{n} \geq 0
\end{aligned}
$$

Knapsack

(a typical problem suitable for (0-1) integer programming)

- Given: a knapsack of a fixed volume v and n objects, each with a volume a_{i} and a value b_{i}.
- Find a collection of these objects with maximal total value that fits in the knapsack.
- IP solution: for each item i take a binary variable x_{i} to model whether item i is included $\left(x_{i}=1\right)$ or $\operatorname{not}\left(x_{i}=0\right)$

$$
\begin{aligned}
& \max b_{1} x_{1}+\cdots+b_{n} x_{n} \text { s.t. } \\
& a_{1} x_{1}+\cdots+a_{n} x_{n} \leq v \\
& 0 \leq x_{1} \leq 1, \ldots, 0 \leq x_{n} \leq 1 \\
& x_{j} \text { is integer for all } j \in\{1, \ldots, n\}
\end{aligned}
$$

Warehouse Location Problem

(A more complicated 0-1 IP problem)

- There is a set of n customers who need to be assigned to one of the m potential warehouse locations.
- Customers can only be assigned to an open warehouse, with there being a cost of c_{j} for opening warehouse j.
- Once open, a warehouse can serve as many customers as it chooses (with different costs $d_{i, j}$ for each customer-warehouse pair).
- Choose a set of warehouse locations that minimizes the overall costs of serving all the n customers.
- IP solution: introduce binary variables
x_{j} representing the decision to open warehouse j $y_{i, j}$ representing the decision to assign customer i to warehouse j

T-79.4201 Search Problems and Algorithms

Expressing Constraints in MIP

- Some constraints cannot be represented straightforwardly using linear constraints.
- A frequently occuring situation involves combining constraints "disjunctively".
- An implication is a typical example which can sometimes be encoded by introducing an additional variable and a new large constant.
- Example. Consider a binary variable x and the constraint "if $x=1$ then $\sum_{j=1}^{n} x_{j} \geq b_{i}$ " where each x_{j} is non-negative. Using a large constant M this can be expressed as follows:

$$
\sum_{j=1}^{n} x_{j} \geq b_{i}-M(1-x)
$$

Notice that here if $x=1$, then $\sum_{j=1}^{n} x_{j} \geq b_{i}$ must hold but if $x=0$, then $\sum_{j=1}^{n} x_{j} \geq b_{i}-M$ imposes no constraint on variables x_{1}, \ldots, x_{n} if we choose some $M \geq b_{i}$.

Expressing Constraints-cont'd

- Example. Consider a disjunctive constraint " $x \geq 5$ or $y \leq 6$ " where x and y are non-negative and $y \leq 1000$.
This constraint can be encoded by introducing a new binary variable b and constant M as follows

$$
\begin{aligned}
& x+M b \geq 5 \\
& y-M(1-b) \leq 6
\end{aligned}
$$

Here if we choose $M \geq 994$, then

- if $b=0$, we have constraints $x \geq 5$ and $y-M \leq 6$ where the latter is satisfied by every value of $y(0 \leq y \leq 1000)$ and
- if $b=1$, we have constraints $x+M \geq 5$ and $y \leq 6$ where the former is satisfied by every value of $x \geq 0$.
- Unfortunately, these techniques for expressing disjunctions are are not general and, e.g., choosing a value for the constant M is often non-trivial.

T-79.4201 Search Problems and Algorithms

Example: Resource Constraints-cont'd

- Disjunctive constraints on binary variables can be expressed straightforwardly.
- For example, to enforce that the values of variables $x_{i j}$ are assigned consistently according to their intuitive meaning following constraints need to be added.
- "Either i occurs before j or the reverse but not both" This is an exclusive-or constraint which can be encoded directly:

$$
x_{i j}+x_{j i}=1 \quad(i \neq j)
$$

- "If i occurs before j and j before k, then i occurs before k." This can be seen as a disjunction $\neg x_{i j} \vee \neg x_{j k} \vee x_{i k}$ of binary variables $x_{i j}, x_{j k}, x_{i k}$:

$$
\left.\left(1-x_{i j}\right)+\left(1-x_{j k}\right)+x_{i k} \geq 1 \text { (or equivalently } x_{i j}+x_{j k}-x_{i k} \leq 1\right)
$$

A potential problem: $\mathrm{O}\left(n^{3}\right)$ constraints are needed where n is the number of jobs.

Example: Resource Constraints

- In a scheduling application typically following types of variables are used:
s_{j} : starting time for job j
$x_{i j}$: binary variable representing whether job i occurs before job j
- Consider now a typical constraint: "If job 1 occurs before job 2, then job 2 starts at least 10 time units after the end of job 1 "
- This is an implication that can be represented by introducing a suitably large constant M (d_{1} is the duration of job 1):

$$
s_{2} \geq s_{1}+d_{1}+10-M\left(1-x_{12}\right)
$$

- If $x_{12}=1$: we get $s_{2} \geq s_{1}+d_{1}+10$ as required.
- If $x_{12}=0$: we get $s_{2} \geq s_{1}+d_{1}+10-M$, which implies no restriction on s_{2} if M is sufficiently large.

-79.4201 Search Problems and Algorithms

Routing Constraints

(An example of a problem where finding a compact MIP encoding is challenging).

- Consider the Hamiltonian cycle problem:

INSTANCE: A graph (V, E).
QUESTION: Is there a simple cycle visiting all nodes of the graph?

- Introduce a binary variable $x_{i, j}$ for each edge $(i, j) \in E$ indicating whether the edge is included in the cycle $\left(x_{i, j}=1\right)$ or not $\left(x_{i, j}=0\right)$.
- Constraints:
- The cycle leaves each node i through exactly one edge:

$$
\text { for each node } i: \sum_{(i, j) \in E} x_{i, j}=1
$$

- The cycle enters each node i through exactly one edge:

$$
\text { for each node } i: \sum_{(j, i) \in E} x_{j, i}=1
$$

Hamiltonian Cycle

- However, the constraints above are not sufficient.
- Consider, for example, a graph with 6 nodes such that variables $x_{1,2}, x_{2,3}, x_{3,1}, x_{4,5}, x_{5,6}, x_{6,4}$ are set to 1 and all others to 0 .
This solution satisfies the constraints but does not represent a Hamiltonian cycle (two separate cycles).
- Enforcing a single cycle is non-trivial.
- A solution for small graphs is to require that the cycle leaves every proper subset of the nodes, that is, to have a constraint

$$
\sum_{(i, j) \in E, i \in s, j \notin s} x_{i, j} \geq 1
$$

for every proper subset s of the nodes V.

- In the example above, this constraint would be violated for $s=\{1,2,3\}$.
- A potential problem for bigger graphs: $\mathrm{O}\left(2^{n}\right)$ constraints needed where n is the number of nodes.

Hamiltonian Cycle-cont'd

- Another approach, where the number of constraints remains polynomial, is to introduce an integer variable p_{i} for each node $i=1, \ldots, n$ in the graph to represent the position of the node i in the cycle, that is, $p_{i}=k$ means that node i is k th node visited in the cycle.
- In order to enforce a single cycle we need to enforce the following conditions.
- Each p_{i} has a value in $\{1, \ldots, n\}$:

$$
1 \leq p_{i} \leq n
$$

- This value is unique, that is, for all pairs of nodes i and j with $i \neq j, p_{i} \neq p_{i}$ holds.
- For all pairs of nodes i and j with $i \neq j$ such that $(i, j) \notin E$, node j cannot be the next node after i, that is,
- $p_{j} \neq p_{i}+1$ holds and
- if $p_{i}=n$, then $p_{j} \geq 2$.

T-79.4201 Search Problems and Aloorithms

Expressing Disequality

- For expressing an arbitrary disequality $x \neq y$ of two bounded integer variables x and y we reformulate the disequality as " $x>y$ or $y>x$ " or equivalently " $x-y \geq 1$ or $x-y \leq-1$ ".
- Now we can model the disjunction using a binary variable b and a large constant M and the constraints

$$
\begin{aligned}
& x-y+M b \geq 1 \\
& x-y-M(1-b) \leq-1
\end{aligned}
$$

Notice that

- if $b=0$, then we get $x-y \geq 1, x-y \leq M-1$ and
- if $b=1$, then we get $x-y+M \geq 1, x-y \leq-1$
where the constraints involving M are satisfied by all values of x, y given large enough M w.r.t. to the bounds on the values of x, y.

MIP Tools

- There are several efficient commercial MIP solvers.
- Also public domain systems exists but these are not as efficient as the commercial ones.
- See, for example,
http://www-unix.mcs.anl.gov/otc/Guide/faq/
linear-programming-faq.html
for MIP systems and other information and frequently asked questions.

MIP Solvers

- A MIP solver can typically take its input via an input file and an API.
- There a number of widely used input formats (like mps) and tool specific formats (lp_solve, CPLEX, LINDO, GNU MathProg, LPFML XML, ...)
- MIP solvers do not require the input program to be in a standard form but typically quite general MIPs are allowed, that is
- both minimization and maximization are supported and
- operators " $=$ ", " \leq ", and " \geq " can all be used.

T-79.4201 Search Problems and Aloorithms
 lp_solve

- In the third home assignment a public domain MIP solver, lp_solve is employed.
- See the newest version (5.5) at
http://lpsolve.sourceforge.net/5.5/
- lp_solve accepts a number of input formats

Example. lp_solve native format
min: x1 + x2 + 3x3;
$\mathrm{x} 1-\mathrm{x} 2<=1$;
$2 \mathrm{x} 2-2.5 \times 3>=1 ;$
$-7 \times 3+x 2=3 ;$
> lp_solve < example
Value of objective function: 3

Actual values of the variables:
x 1 0
$x 2$ 3
x3
0

