Lecture 5: Constraint satisfaction: formalisms and modelling

- ▶ When solving a search problem the most efficient solution methods are typically based on special purpose algorithms.
- ▶ In Lectures 3 and 4 important approaches to developing such algorithms have been discussed.
- ► However, developing a special purpose algorithm for a given problem requires typically a substantial amount of expertise and considerable resources.
- Another approach is to exploit an efficient algorithm already developed for some problem through reductions.

I.N. & P.O. Autumn 2007

I.N. & P.O. Autumn 2007

√79.4201 Search Problems and Algorithms

Constraints

- ▶ Given variables $Y := y_1, ..., y_k$ and domains $D_1, ... D_k$, a constraint C on Y is a subset of $D_1 \times \cdots \times D_k$.
- ▶ If k = 1, the constraint is called unary and if k = 2, binary.

Example. Consider variables y_1, y_2 both having the domain $D_i = \{0, 1, 2\}$. Then

$$NotEq = \{(0,1), (0,2), (1,0), (1,2), (2,0), (2,1)\}$$

can be taken as a binary constraint on y_1, y_2 and then we denote it by $NotEq(y_1, y_2)$ and if it is on y_2, y_1 , then by $NotEq(y_2, y_1)$.

- ▶ In what follows we use a shorthand notation for constraints by giving directly the condition on the variables when it is clear how to interpret the condition on the domain elements.
- ▶ Hence, $cond(y_1,...,y_k)$ on variables $y_1,...,y_k$ with domains $D_1,...D_k$ denotes the constraint

 $\{(d_1,\ldots,d_k)\mid d_i\in D_i \text{ for } i=1,\ldots,k \text{ and } cond(d_1,\ldots,d_k) \text{ holds}\}$

T-79.4201 Search Problems and Algorithms

Exploiting Reductions

▶ Given an efficient algorithm for a problem A we can solve a problem B by developing a reduction from B to A.

- Constraint satisfaction problems (CSPs) offer attractive target problems to be used in this way:
 - CSPs provide a flexible framework to develop reductions, i.e., encodings of problems as CSPs such that a solution to the original problem can be easily extracted from a solution of the CSP encoding the problem.
 - Constraint programming offers tools to build efficient algorithms for solving CSPs for a wide range of constraints.
 - ► There are efficient software packages that can be directly used for solving interesting classes of constraints.

◆□ → ◆□ → ◆ = → ◆ = → へ ○ へ ○ ○

I.N. & P.O. Autumn 2007

T-79.4201 Search Problems and Algorithms

Constraints

Example

Condition $y_1 \neq y_2$ on variables y_1, y_2 with domains D_1, D_2 denotes the constraint

$$\{(d_1,d_2) \mid d_1 \in D_1, d_2 \in D_2, d_1 \neq d_2\}.$$

So if y_1, y_2 both have the domain $\{0, 1, 2\}$, then $y_1 \neq y_2$ denotes the constraint $NotEq(y_1, y_2)$ above.

Example

.N. & P.O. Autumn 2007

Condition $y_1 \le \frac{y_2}{2} + \frac{1}{4}$ on y_1, y_2 both having the domain $\{0, 1, 2\}$ denotes the constraint

$$\{(d_1,d_2) \mid d_1,d_2 \in \{0,1,2\}, d_1 \leq \frac{d_2}{2} + \frac{1}{4}\} = \{(0,0),(0,1),(0,2),(1,2)\}.$$

-79.4201 Search Problems and Algorithms

Constraint Satisfaction Problems (CSPs)

▶ Given variables $x_1, ..., x_n$ and domains $D_1, ..., D_n$, a constraint satisfaction problem (CSP):

$$\langle \mathbf{C}; x_1 \in D_1, \dots, x_n \in D_n \rangle$$

where **C** is a set of constraints each on a subsequence of x_1, \ldots, x_n .

Example

$$\{ NotEq(x_1, x_2), NotEq(x_1, x_3), NotEq(x_2, x_3) \},$$

 $x_1 \in \{0, 1, 2\}, x_2 \in \{0, 1, 2\}, x_3 \in \{0, 1, 2\} \}$

is a CSP. We often use shorthands for the constrains and write

$$\langle \{x_1 \neq x_2, x_1 \neq x_3, x_2 \neq x_3\}, x_1 \in \{0,1,2\}, x_2 \in \{0,1,2\}, x_3 \in \{0,1,2\} \rangle$$

I.N. & P.O. Autumn 2007

I.N. & P.O. Autumn 2007

5

T-79.4201 Search Problems and Algorithms

Example: Graph Coloring Problem

Given a graph G, the coloring problem can be encoded as a CSP as follows.

- ▶ For each node v_i in the graph introduce a variable V_i with the domain $\{1, ..., n\}$ where n is the number of available colors.
- ▶ For each edge (v_i, v_i) in the graph introduce a constraint $V_i \neq V_i$.
- ➤ This is a reduction of the coloring problem to a CSP because the solutions to the CSP correspond exactly to the solutions of the coloring problem:
 - a value assignment $\{V_1 \mapsto t_1, \dots, V_n \mapsto t_n\}$ satisfying all the constraints gives a valid coloring of the graph where node v_i is colored with color t_i .

ロト 4月ト 4 三 ト 4 三 ト 9 9 9

T-79.4201 Search Problems and Algorithms

CSPs II

- ▶ For a CSP $\langle \mathbf{C}; x_1 \in D_1, \dots, x_n \in D_n \rangle$ a potential solution is given by a value assignment which a mapping T from $\{x_1, \dots, x_n\}$ to $D_1 \cup \dots \cup D_n$ such that for each variable $x_i, T(x_i) \in D_i$.
- A value assignment T satisfies a constraint C on variables x_{i_1}, \ldots, x_{i_m} if $(T(x_{i_1}), \ldots, T(x_{i_m})) \in C$.
- ▶ **Example.** A value assignment $T = \{x_1 \mapsto 1, x_2 \mapsto 2, \dots, x_n \mapsto n\}$ satisfies the constraint *NotEq* on x_1, x_2 because $(T(x_1), T(x_2)) = (1, 2) \in NotEq$ but $T' = \{x_1 \mapsto 1, x_2 \mapsto 1, \dots, x_n \mapsto 1\}$ does not as $(T'(x_1), T'(x_2)) = (1, 1) \notin NotEq$.
- ▶ A solution to a CSP $\langle \mathbf{C}, x_1 \in D_1, \dots, x_n \in D_n \rangle$ is a value assignment that satisfies every constraint $C \in \mathbf{C}$.

Example. Consider a CSP

$$\langle \{x_1 \neq x_2, x_1 \neq x_3, x_2 \neq x_3\}, x_1 \in \{0, 1, 2\}, x_2 \in \{0, 1, 2\}, x_3 \in \{0, 1, 2\} \rangle$$

The assignment $\{x_1 \mapsto 0, x_2 \mapsto 1, x_3 \mapsto 2\}$ is a solution to the CSP as it satisfies all the constraints but $\{x_1 \mapsto 0, x_2 \mapsto 1, x_3 \mapsto 1\}$ is not as it does not satisfy the constraint $x_2 \neq x_3$ ($NotEq(x_2, x_3)$)

2 P.O. Autumn 2007

T-79.4201 Search Problems and Algorithms

Example: SEND + MORE = MONEY

▶ Replace each letter by a different digit so that

 SEND
 9567

 + MORE
 + 1085

 MONEY
 10652

is a correct sum. The unique solution.

- ► Variables: S, E, N, D, M, O, R, Y
- ▶ Domains: [1..9] for S, M and [0..9] for E, N, D, O, R, Y
- Constraints:

$$1000 \cdot S + 100 \cdot E + 10 \cdot N + D$$
$$+1000 \cdot M + 100 \cdot O + 10 \cdot R + E$$
$$= 10000 \cdot M + 1000 \cdot O + 100 \cdot N + 10 \cdot E + Y$$

 $x \neq y$ for every pair of variables x, y in {S, E, N, D, M, O, R, Y}.

▶ It is easy to check that the value assignment $\{S \mapsto 9, E \mapsto 5, N \mapsto 6, D \mapsto 7, M \mapsto 1, O \mapsto 0, R \mapsto 8, Y \mapsto 2\}$ satisfies the constraints, i.e., is a solution to the problem.

N Queens

Problem: Place n queens on a $n \times n$ chess board so that they do not attack each other.

- ▶ Variables: $x_1, ..., x_n$ (x_i gives the position of the queen on ith column)
- ▶ Domains: [1..n] for each x_i , i = 1,...,n
- ▶ Constraints: for $i \in [1..n-1]$ and $j \in [i+1..n]$:
 - (i) $x_i \neq x_i$ (rows)
 - (ii) $x_i x_i \neq i j$ (SW-NE diagonals)
 - (iii) $x_i x_i \neq j i$ (NW-SE diagonals)
- ▶ When n = 10, the value assignment $\{x_1 \mapsto 3, x_2 \mapsto 10, x_3 \mapsto 7, x_4 \mapsto 4, x_5 \mapsto 1, x_6 \mapsto 5, x_7 \mapsto 2, x_8 \mapsto 9, x_9 \mapsto 6, x_{10} \mapsto 8\}$ gives a solution to the problem.

I.N. & P.O. Autumn 2007

.N. & P.O. Autumn 2007

9

√79.4201 Search Problems and Algorithms

Solving CSPs

- Constraints have varying computational properties.
- For some classes of constraints there are efficient special purpose algorithms (domain specific methods/constraint solvers).
 Examples
 - Linear equations
 - Linear programming
 - Unification
- ► For others general methods consisting of
 - constraint propagation algorithms and
 - search methods

must be used.

- Different encodings of a problem as a CSP utilizing different sets of constraints can have substantial different computational properties.
- ► However, it is not obvious which encodings lead to the best computational performance.

Constrained Optimization Problems

- ▶ Given: a CSP $P := \langle \mathbf{C}; x_1 \in D_1, \dots, x_n \in D_n \rangle$ and a function *obj* which maps solutions of the CSP to real numbers.
- ▶ (*P*, *obj*) is a constrained optimization problem (COP) where the task is to find a solution *T* to *P* for which the value *obj*(*T*) is optimal (minimal/maximal).
- ► Example. KNAPSACK: a knapsack of a fixed volume and n objects, each with a volume and a value. Find a collection of these objects with maximal total value that fits in the knapsack.
- Representation as a COP:

Given: knapsack volume v and n objects with volumes a_1, \ldots, a_n and values b_1, \ldots, b_n .

Variables: x_1, \ldots, x_n

Domains: {0,1}

Constraint: $\sum_{i=1}^{n} a_i \cdot x_i \leq v$, Objective function: $\sum_{i=1}^{n} b_i \cdot x_i$.

.N. & P.O. Autumn 2007

T–79.4201 Search Problems and Algorithms

Constraints

- ▶ In the course we consider more carefully two classes of constraints: linear constraints and Boolean constraints.
- ▶ Linear constraints (Lectures 7–9) are an example of a class of constraints which has efficient special purpose algorithms.
- Now we consider Boolean constraints as an example of a class for which we need to use general methods based on propagation and search.
- ► However, boolean constraints are interesting because
 - highly efficient general purpose methods are available for solving Boolean constraints;
 - they provide a flexible framework for encoding (modelling) where it is possible to use combinations of constraints (with efficient support by solution techniques).

Boolean Constraints

- ▶ A Boolean constraint C on variables $x_1, ..., x_n$ with the domain $\{ \text{true}, \text{false} \}$ can be seen as a Boolean function $f_C : \{ \text{true}, \text{false} \}^n \longrightarrow \{ \text{true}, \text{false} \}$ such that a value assignment $\{ x_1 \mapsto t_1, ..., x_n \mapsto t_n \}$ satisfies the constraint C iff $f_C(t_1, ..., t_n) = \text{true}$.
- Typically such functions are represented as propositional formulas.
- ➤ Solution methods for Boolean constraints exploit the structure of the representation of the constraints as formulas.

I.N. & P.O. Autumn 2007

T-79.4201 Search Problems and Algorithms

Propositional formulas

- Syntax (what are well-formed propositional formulas): Boolean variables (atoms) $X = \{x_1, x_2, ...\}$ Boolean connectives \vee, \wedge, \neg
- ► The set of (propositional) formulas is the smallest set such that all Boolean variables are formulas and if ϕ_1 and ϕ_2 are formulas, so are $\neg \phi_1$, $(\phi_1 \land \phi_2)$, and $(\phi_1 \lor \phi_2)$. For example, $((x_1 \lor x_2) \land \neg x_3)$ is a formula but $((x_1 \lor x_2) \neg x_3)$ is not.
- A formula of the form x_i or $\neg x_i$ is called a literal where x_i is a Boolean variable.
- ▶ We employ usual shorthands:

$$\begin{array}{l} \varphi_1 \rightarrow \varphi_2 \colon \neg \varphi_1 \vee \varphi_2 \\ \varphi_1 \leftrightarrow \varphi_2 \colon (\neg \varphi_1 \vee \varphi_2) \wedge (\neg \varphi_2 \vee \varphi_1) \\ \varphi_1 \oplus \varphi_2 \colon (\neg \varphi_1 \wedge \varphi_2) \vee (\varphi_1 \wedge \neg \varphi_2) \end{array}$$

I.N. & P.O. Autumn 2007

Example: Graph coloring

- Consider the problem of finding a 3-coloring for a graph.
- ▶ This can be encoded as a set of Boolean constraints as follows:
 - ► For each vertex $v \in V$, introduce three Boolean variables v_1, v_2, v_3 (intuition: v_i is true iff vertex v is colored with color i).
 - For each vertex $v \in V$ introduce the constraints

$$(v_1 \lor v_2 \lor v_3) \land (v_1 \to \neg v_3) \land (v_2 \to \neg v_3)$$

▶ For each edge $(v, u) \in E$ introduce the constraint

$$(v_1 \rightarrow \neg u_1) \wedge (v_2 \rightarrow \neg u_2) \wedge (v_3 \rightarrow \neg u_3)$$

Now 3-colorings of a graph (V, E) and solutions to the Boolean constraints (satisfying truth assignments) correspond: vertex v colored with color i iff v₁ assigned true in the solution.

.N. & P.O. Autumn 2007

T-79.4201 Search Problems and Algorithms

Semantics

- ▶ Atomic proposition (Boolean variables) are either true or false and this induces a truth value for any formula as follows.
- A truth assignment T is mapping from a finite subset X' ⊂ X to the set of truth values {true, false}.
- Consider a truth assignment $T: X' \longrightarrow \{ true, false \}$ which is appropriate to ϕ , i.e., $X(\phi) \subseteq X'$ where $X(\phi)$ be the set of Boolean variables appearing in ϕ .
- ▶ $T \models \phi$ (T satisfies ϕ) is defined inductively as follows: If ϕ is a variable, then $T \models \phi$ iff $T(\phi) = \mathbf{true}$. If $\phi = \neg \phi_1$, then $T \models \phi$ iff $T \not\models \phi_1$ If $\phi = \phi_1 \land \phi_2$, then $T \models \phi$ iff $T \models \phi_1$ and $T \models \phi_2$ If $\phi = \phi_1 \lor \phi_2$, then $T \models \phi$ iff $T \models \phi_1$ or $T \models \phi_2$

Example

Let
$$T(x_1) = \text{true}$$
, $T(x_2) = \text{false}$.
Then $T \models x_1 \lor x_2$ but $T \not\models (x_1 \lor \neg x_2) \land (\neg x_1 \land x_2)$

Representing Boolean Functions

 \blacktriangleright A propositional formula ϕ with variables x_1, \ldots, x_n expresses a *n*-ary Boolean function *f* if for any *n*-tuple of truth values $\mathbf{t} = (t_1, \dots, t_n), f(\mathbf{t}) =$ true if $T \models \emptyset$ and $f(\mathbf{t}) =$ false if $T \not\models \emptyset$ where $T(x_i) = t_i, i = 1, ..., n$.

Proposition. Any *n*-ary Boolean function *f* can be expressed as a propositional formula ϕ_f involving variables x_1, \dots, x_n .

- ▶ The idea: model each case of the function f having value **true** as a disjunction of conjunctions.
- ▶ Let F be the set of all n-tuples $\mathbf{t} = (t_1, \dots, t_n)$ with $f(\mathbf{t}) = \mathbf{true}$. For liter $t_i =$

r each t , let <i>D</i> t be a conjunction of	$\Phi_f =$
erals x_i if $t_i = $ true and $\neg x_i$ if	$(\neg x_1 \land x_1)$
= false.	$(x_1 \wedge \neg x_1)$

 \blacktriangleright Let $\phi_f = \bigvee_{\mathbf{t} \in F} D_{\mathbf{t}}$

Example.				
<i>x</i> ₁	<i>x</i> ₂	f		
0	0	0		
0	1	1		
1	0	1		
1	1	0		
$\phi_f =$				
$(\neg x_1 \wedge x_2) \vee$				
$(x_1 \wedge \neg x_2)$				

I.N. & P.O. Autumn 2007

7-79.4201 Search Problems and Algorithms

Normal Forms

▶ Many solvers for Boolean constraints require that the constraints are represented in a normal form (typically in conjunctive normal form).

Proposition. Every propositional formula is equivalent to one in conjunctive (disjunctive) normal form.

CNF:
$$(I_{11} \lor \cdots \lor I_{1n_1}) \land \cdots \land (I_{m1} \lor \cdots \lor I_{mn_m})$$

DNF: $(I_{11} \wedge \cdots \wedge I_{1n_1}) \vee \cdots \vee (I_{m1} \wedge \cdots \wedge I_{mn_m})$

where each l_{ii} is a literal (Boolean variable or its negation).

A disjunction $I_1 \vee \cdots \vee I_n$ is called a clause.

A conjunction $l_1 \wedge \cdots \wedge l_n$ is called an implicant.

F-79.4201 Search Problems and Algorithms

Logical Equivalence

Definition

Formulas ϕ_1 and ϕ_2 are equivalent ($\phi_1 \equiv \phi_2$) iff for all truth assignments T appropriate to both of them, $T \models \phi_1$ iff $T \models \phi_2$.

Example

$$\begin{aligned} (\varphi_1 \lor \varphi_2) &\equiv (\varphi_2 \lor \varphi_1) \\ ((\varphi_1 \land \varphi_2) \land \varphi_3) &\equiv (\varphi_1 \land (\varphi_2 \land \varphi_3)) \\ \neg \neg \varphi &\equiv \varphi \\ ((\varphi_1 \land \varphi_2) \lor \varphi_3) &\equiv ((\varphi_1 \lor \varphi_3) \land (\varphi_2 \lor \varphi_3)) \\ \neg (\varphi_1 \land \varphi_2) &\equiv (\neg \varphi_1 \lor \neg \varphi_2) \\ (\varphi_1 \lor \varphi_1) &\equiv \varphi_1 \end{aligned}$$

Simplified notation:

$$(((x_1 \lor \neg x_3) \lor x_2) \lor x_4 \lor (x_2 \lor x_5))$$
 is written as $x_1 \lor \neg x_3 \lor x_2 \lor x_4 \lor x_5$ or $x_1 \lor \neg x_3 \lor x_2 \lor x_4 \lor x_5$

►
$$\bigvee_{i=1}^{n} \varphi_i$$
 stands for $\varphi_1 \lor \cdots \lor \varphi_n$
 $\bigwedge_{i=1}^{n} \varphi_i$ stands for $\varphi_1 \land \cdots \land \varphi_n$

(ロ) (部) (目) (目) (目) (9)(()

.N. & P.O. Autumn 2007

F-79.4201 Search Problems and Algorithms

I.N. & P.O. Autumn 2007

Normal Form Transformations

CNF/DNF transformation:

1. remove
$$\leftrightarrow$$
 and \rightarrow :
$$\alpha \leftrightarrow \beta \quad \rightsquigarrow \quad (\neg \alpha \lor \beta) \land (\neg \beta \lor \alpha) \quad \text{(1)}$$

$$\alpha \to \beta \quad \rightsquigarrow \quad \neg \alpha \lor \beta \quad \text{(2)}$$

2. Push negations in front of Boolean variables:

$$\neg\neg\alpha \qquad \rightsquigarrow \quad \alpha \qquad (3)
\neg(\alpha \lor \beta) \qquad \rightsquigarrow \quad \neg\alpha \land \neg\beta \quad (4)
\neg(\alpha \land \beta) \qquad \rightsquigarrow \quad \neg\alpha \lor \neg\beta \quad (5)$$

3. CNF: move ∧ connectives outside ∨ connectives:

$$\begin{array}{ccc} \alpha \vee (\beta \wedge \gamma) & \rightsquigarrow & (\alpha \vee \beta) \wedge (\alpha \vee \gamma) & (6) \\ (\alpha \wedge \beta) \vee \gamma & \rightsquigarrow & (\alpha \vee \gamma) \wedge (\beta \vee \gamma) & (7) \end{array}$$

DNF: move ∨ connectives outside ∧ connectives:

$$\alpha \wedge (\beta \vee \gamma) \quad \rightsquigarrow \quad (\alpha \wedge \beta) \vee (\alpha \wedge \gamma) \quad (8)$$

$$(\alpha \vee \beta) \wedge \gamma \quad \rightsquigarrow \quad (\alpha \wedge \gamma) \vee (\beta \wedge \gamma) \quad (9)$$

T-79.4201 Search Problems and Algorithms

Example

Transform $(A \lor B) \rightarrow (B \leftrightarrow C)$ to CNF.

$$(A \lor B) \to (B \leftrightarrow C) \qquad (1,2)$$

$$\neg (A \lor B) \lor ((\neg B \lor C) \land (\neg C \lor B)) \qquad (4)$$

$$(\neg A \land \neg B) \lor ((\neg B \lor C) \land (\neg C \lor B)) \qquad (7)$$

$$(\neg A \lor ((\neg B \lor C) \land (\neg C \lor B))) \land (\neg B \lor ((\neg B \lor C) \land (\neg C \lor B))) \qquad (6)$$

$$((\neg A \lor (\neg B \lor C)) \land (\neg A \lor (\neg C \lor B))) \land (\neg B \lor ((\neg B \lor C) \land (\neg C \lor B))) \qquad (6)$$

$$((\neg A \lor (\neg B \lor C)) \land (\neg A \lor (\neg C \lor B))) \land ((\neg B \lor (\neg B \lor C)) \land (\neg B \lor (\neg C \lor B))) \qquad ((\neg A \lor \neg B \lor C)) \land (\neg A \lor \neg C \lor B) \land (\neg B \lor \neg B \lor C) \land (\neg B \lor \neg C \lor B)$$

- ▶ We can assume that normal forms do not have repeated clauses/implicants or repeated literals in clauses/implicants (for example $(\neg B \lor \neg B \lor C) \equiv (\neg B \lor C)$).
- Normal form can be exponentially bigger than the original formula in the worst case.

I.N. & P.O. Autumn 2007

T–79.4201 Search Problems and Algorithms

Boolean Circuits

- ▶ A Boolean circuit C is a tuple (V, E, s) where
- ▶ (V, E) is an acyclic graph whose nodes are called gates. The nodes are divided into three categories:
 - output gates (outdegree 0)
 - intermediate gates
 - ▶ input gates (indgree 0)
- ▶ s assigns a Boolean function s(g) to each intermediate and output gate g of appropriate arity corresponding to the indegree of the gate.
- ➤ Typical Boolean functions used in the gates are and/n (n-input AND function), or/n, not, equiv/2, xor/2, ...

For example

<i>x</i> ₁	<i>x</i> ₂	equiv/2	xor/2
0	0	1	0
0	1	0	1
1	0	0	1
1	1	1	0

Boolean Circuits

- Normal forms are often quite an unnatural way of encoding problems and it is more convenient to use full propositional logic.
- In many applications the encoding is of considerable size and different parts of the encoding have a substantial amount of common substructure.
- ▶ Boolean circuits offer an attractive formalism for representing the required Boolean functions where compactness is enhanced by sharing common substructure.

4 □ ▶ 4 □ ▶ 4 ≡ ▶ 4 ≡ ▶ = *) Q (*

.N. & P.O. Autumn 2007 22

T-79.4201 Search Problems and Algorithms

Example. Boolean Circuit

$$s(v_1) = and/2$$

 $s(v_2) = or/3$

$$s(v_2) = equiv/2$$

 v_1 is the output gate of the circuit v_4 , v_5 , v_6 are the input gates

Boolean Circuits—Semantics

- For a circuit a truth assignment T: X(C) → {true, false} gives a truth assignment to each gate in X(C) where X(C) is the set of input gates of C.
- ▶ This defines a truth value T(g) for each gate g inductively when the gates are ordered topologically in a sequence so that no gate appears in the sequence before its input gates (this is always possible because the circuit is acyclic):
 - ▶ If $g \in X(C)$, then the truth assignment T(g) gives the truth value.
 - Otherwise $T(g) = f(T(g_1), ..., T(g_n))$ where $(g_1, g), ...$ and (g_n, g) are the edges entering g and f is the Boolean function s(g) associated to g.

Example. For the previous example circuit C, $X(C) = \{v_4, v_5, v_6\}$. For a truth assignment $T(v_4) = T(v_5) = T(v_6) =$ false, $T(v_3) = equiv($ false, false) =true, $T(v_2) =$ false, $T(v_1) =$ false.

.N. & P.O. Autumn 2007

N. & P.O. Autumn 2007

25

T-79.4201 Search Problems and Algorithms

Boolean Circuits vs. Propositional Formulas

For each propositional formula ϕ , there is a corresponding Boolean circuit C_{ϕ} such that for any T appropriate for both, $T(g_{\phi}) =$ true iff $T \models \phi$ for an output gate g_{ϕ} of C_{ϕ} . Idea: just introduce a new gate for each subexpression.

$$(a \lor b) \land (\neg a \lor b) \land (a \lor \neg b) \land (\neg a \lor \neg b)$$

- ▶ For each Boolean circuit C, there is a corresponding formula ϕ_C .
- Notice that Boolean circuits allow shared subexpressions but formulas do not.

For instance, in the circuit above gates a, b, c, d.

4 D > 4 D > 4 E > 4 E > E 990

-79.4201 Search Problems and Algorithms

Circuit Satisfiability Problem

- ► An interesting computational (search) problem related to circuits is the circuit satisfiability problem.
- ▶ A constrained Boolean circuit is a pair (C, α) with a circuit C and constraints α assigning truth values for some gates.
- ▶ Given a constrained Boolean circuit (C,α) a truth assignment T satisfies (C,α) if it satisfies the constraints α , i.e., for each gate g for which α gives a truth value, $\alpha(g) = T(g)$ holds.
- ► CIRCUIT SAT problem: Given a constrained Boolean circuit find a truth assignment *T* that satisfies it.

Example. Consider the circuit with constraints $\alpha(v_4) = \text{false}$, $\alpha(v_1) = \text{true}$. This circuit has a satisfying truth assignment $T(v_4) = \text{false}$, $T(v_5) = T(v_6) = \text{true}$.

If the constraints are $\alpha(v_2) = \text{false}$, $\alpha(v_1) = \text{true}$. If the constraints are $\alpha(v_2) = \text{false}$, $\alpha(v_1) = \text{true}$, the circuit is unsatisfiable.

.N. & P.O. Autumn 2007

T-79.4201 Search Problems and Algorithms

Circuits Compute Boolean Functions

- A Boolean circuit with output gate g and variables $x_1, ..., x_n$ computes an n-ary Boolean function f if for any n-tuple of truth values $\mathbf{t} = (t_1, ..., t_n)$, $f(\mathbf{t}) = T(g)$ where $T(x_i) = t_i$, i = 1, ..., n.
- ▶ Any *n*-ary Boolean function f can be computed by a Boolean circuit involving variables x_1, \ldots, x_n .
- Not every Boolean function can be computed using a concise circuit.

Theorem

For any $n \ge 2$ there is an n-ary Boolean function f such that no Boolean circuit with $\frac{2^n}{2n}$ or fewer gates can compute it.

Boolean Circuits as Equation Systems

A Boolean circuit can be written as a system of equations.

$$v = and(e, f, g, h)$$

$$e = or(a, b)$$

$$f = \operatorname{or}(b, c)$$

$$g = \operatorname{or}(a, d)$$

$$h = \operatorname{or}(c, d)$$

$$c = not(a)$$

$$d = not(b)$$

◆ロト→部ト→ミト→ミ から○

I.N. & P.O. Autumn 2007

I.N. & P.O. Autumn 2007

4□ > 4圖 > 4 圖 > 4 圖 > ■ 900

√79.4201 Search Problems and Algorithms

Example

Binary adder. Given input bits a, b and c compute output bits o_2o_1 which give the sum of a, b, and c in binary.

As a formula:

$$o_1 \equiv ((a \oplus b) \oplus c)$$

$$o_2 \equiv (a \wedge b) \vee (c \wedge (a \oplus b))$$

As a circuit:

$$o_1 = xor(x, c)$$

$$o_2 = \operatorname{or}(I, r)$$

$$I = and(a, b)$$

$$r = \operatorname{and}(c, x)$$

$$x = xor(a, b)$$

I.N. & P.O. Autumn 2007

T-79.4201 Search Problems and Algorithms

F-79.4201 Search Problems and Algorithms

Boolean Modelling

As a formula:

As a circuit:

 $ite = or(i_1, i_2)$

 $i_1 = \operatorname{and}(a, b)$

 $i_2 = \operatorname{and}(a_1, c)$

a subcircuit given above.

a primitive gate functions.

 $a_1 = not(a)$

 $ite(a, b, c) \equiv (a \land b) \lor (\neg a \land c)$

Encoding Problems Using Circuits

▶ Circuits can be used to encode problems in a structured way.

▶ Propositional formulas/Boolean circuits offer a natural way of

 \blacktriangleright Given gates a, b, c, ite(a, b, c) can be thought as a shorthand for

▶ In the bczchaff tool used in the course ite(a, b, c) is provided as

Example. IF-THEN-ELSE ite(a, b, c) (if a then b else c.).

modelling many interesting Boolean functions.

- Example. Given three bits a, b, c find their values such that if at least two of them are ones then either a or b is one else a or c is one.
- We use IF-THEN-ELSE and adder circuits to encode this as a CIRCUIT SAT problem as follows:

$$p = ite(o_2, x, p_1)$$

$$p_1 = or(a, c)$$

$$%$$
 full adder; gate o_1 omitted

$$o_2 = \operatorname{or}(I, r)$$

$$I = and(a, b)$$

$$r = \operatorname{and}(c, x)$$

$$x = xor(a, b)$$

Now each satisfying truth assignment for the circuit with constraint $\alpha(p) =$ true gives a solution to the problem.

Example. Reachability

Given a graph $G = (\{1, ..., n\}, E)$, constructs a circuit R(G) such that R(G) is satisfiable iff there is a path from 1 to n in G.

- ► The gates of R(G) are of the form g_{ijk} with $1 \le i, j \le n$ and $0 \le k \le n$ h_{ijk} with $1 \le i, j, k \le n$
- ▶ g_{ijk} is true: there is a path in G from i to j not using any intermediate node bigger than k.
- ▶ h_{ijk} is true: there is a path in G from i to j not using any intermediate node bigger than k but using k.

I.N. & P.O. Autumn 2007

T-79.4201 Search Problems and Algorithms

Example—cont'd

- ▶ Because of the constraints α on input gates there is at most one possible truth assignment T.
- ▶ It can be shown by induction on k = 0, 1, ..., n that in this assignment the truth values of the gates correspond to their given intuitive readings.
- From this it follows: R(G) is satisfiable iff $T(g_{1nn}) = \mathbf{true}$ in the truth assignment iff there is a path from 1 to n in G without any intermediate nodes bigger than n iff there is a path from 1 to n in G.

T-79.4201 Search Problems and Algorithms

Example—cont'd

R(G) is the following circuit:

- For k = 0, g_{ijk} is an input gate.
- For k = 1, 2, ..., n: $h_{ijk} = \text{and}(g_{ik(k-1)}, g_{kj(k-1)})$ $g_{ijk} = \text{or}(g_{ij(k-1)}, h_{ijk})$
- g_{1nn} is the output gate of R(G).
- ► Constraints α : For the output gate: $\alpha(g_{1nn}) = \mathbf{true}$ For the input gates: $\alpha(g_{ij0}) = \mathbf{true}$ if i = j or (i,j) is an edge in G else $\alpha(g_{ij0}) = \mathbf{false}$.

I.N. & P.O. Autumn 2007

T-79.4201 Search Problems and Algorithms

From Circuits to CNF

- ► Translating Boolean Circuits to an equivalent CNF formula can lead to exponential blow-up in the size of the formula.
- ➤ Often exact equivalence is not necessary but auxiliary variables can be used as long as at least satisfiability is preserved.
- ► Then a linear size CNF representation can be obtained, e.g., using the co-called Tseitin's translation where given a Boolean circuit *C* the corresponding CNF formula is obtained as follows
 - a new variable is introduced to each gate of the circuit,
 - the set of clauses in the normal form consists of the gate equation (taken as an equivalence) written in a clausal form for each intermediate and output gate with
 - for each constraint $\alpha(g) = t$, the corresponding literal for g added.
- ► This transformation preserves satisfiability and even truth assignments in the following sense: if C is a Boolean circuit and Σ its Tseitin translation, then for every truth assignment T of C there is a satisfying truth assignment T' of Σ which agrees with T and vice versa.

From Circuits to CNF II

Example. v_1 and v_2 or equiv v_3 v_4 v_5 v_6

Consider the circuit with constraints $\alpha(v_1) = \text{true}, \alpha(v_4) = \text{false}.$

Gate equations (taken as equivalences)

for non-input gates:

$$v_1 \leftrightarrow (v_2 \wedge v_3)$$

$$v_2 \leftrightarrow (v_4 \lor v_5 \lor v_6)$$

$$v_3 \leftrightarrow (v_5 \leftrightarrow v_6)$$

The resulting CNF for the translation:

$$(\neg v_1 \lor v_2) \land (\neg v_1 \lor v_3) \land (v_1 \lor \neg v_2 \lor \neg v_3) \land \\ (v_2 \lor \neg v_4) \land (v_2 \lor \neg v_5) \land (v_2 \lor \neg v_6) \land (\neg v_2 \lor v_4 \lor v_5 \lor v_6) \land \\ (v_3 \lor v_5 \lor v_6) \land (v_3 \lor \neg v_5 \lor \neg v_6) \land (\neg v_3 \lor v_5 \lor \neg v_6) \land (\neg v_3 \lor \neg v_5 \lor v_6) \land \\ v_1 \land \neg v_4 \text{ [for constraints]}$$

I.N. & P.O. Autumn 2007

37