## Exploiting Reductions

## Lecture 5: Constraint satisfaction: formalisms and modelling

- When solving a search problem the most efficient solution methods are typically based on special purpose algorithms.
- In Lectures 3 and 4 important approaches to developing such algorithms have been discussed.
- However, developing a special purpose algorithm for a given problem requires typically a substantial amount of expertise and considerable resources.
- Another approach is to exploit an efficient algorithm already developed for some problem through reductions.


## T-79.4201 Seach Probems and Aborimms

## Constraints

- Given variables $Y:=y_{1}, \ldots, y_{k}$ and domains $D_{1}, \ldots D_{k}$, a constraint $C$ on $Y$ is a subset of $D_{1} \times \cdots \times D_{k}$.
- If $k=1$, the constraint is called unary and if $k=2$, binary.

Example. Consider variables $y_{1}, y_{2}$ both having the domain $D_{i}=\{0,1,2\}$. Then

$$
\text { Not } E q=\{(0,1),(0,2),(1,0),(1,2),(2,0),(2,1)\}
$$

can be taken as a binary constraint on $y_{1}, y_{2}$ and then we denote it by $\operatorname{NotEq}\left(y_{1}, y_{2}\right)$ and if it is on $y_{2}, y_{1}$, then by $\operatorname{NotEq}\left(y_{2}, y_{1}\right)$.

- In what follows we use a shorthand notation for constraints by giving directly the condition on the variables when it is clear how to interpret the condition on the domain elements.
- Hence, cond $\left(y_{1}, \ldots, y_{k}\right)$ on variables $y_{1}, \ldots, y_{k}$ with domains $D_{1}, \ldots D_{k}$ denotes the constraint
$\left\{\left(d_{1}, \ldots, d_{k}\right) \mid d_{i} \in D_{i}\right.$ for $i=1, \ldots, k$ and $\operatorname{cond}\left(d_{1}, \ldots, d_{k}\right)$ holds $\}$
- Given an efficient algorithm for a problem $A$ we can solve a problem $B$ by developing a reduction from $B$ to $A$.

- Constraint satisfaction problems (CSPs) offer attractive target problems to be used in this way:
- CSPs provide a flexible framework to develop reductions, i.e., encodings of problems as CSPs such that a solution to the original problem can be easily extracted from a solution of the CSP encoding the problem.
- Constraint programming offers tools to build efficient algorithms for solving CSPs for a wide range of constraints.
- There are efficient software packages that can be directly used for solving interesting classes of constraints.


## T-79.4201 Search Problems and Algorithms

## Constraints

Example
Condition $y_{1} \neq y_{2}$ on variables $y_{1}, y_{2}$ with domains $D_{1}, D_{2}$ denotes the constraint

$$
\left\{\left(d_{1}, d_{2}\right) \mid d_{1} \in D_{1}, d_{2} \in D_{2}, d_{1} \neq d_{2}\right\} .
$$

So if $y_{1}, y_{2}$ both have the domain $\{0,1,2\}$, then $y_{1} \neq y_{2}$ denotes the constraint $\operatorname{NotEq}\left(y_{1}, y_{2}\right)$ above.

Example
Condition $y_{1} \leq \frac{y_{2}}{2}+\frac{1}{4}$ on $y_{1}, y_{2}$ both having the domain $\{0,1,2\}$ denotes the constraint
$\left\{\left(d_{1}, d_{2}\right) \mid d_{1}, d_{2} \in\{0,1,2\}, d_{1} \leq \frac{d_{2}}{2}+\frac{1}{4}\right\}=\{(0,0),(0,1),(0,2),(1,2)\}$.

## Constraint Satisfaction Problems (CSPs)

- Given variables $x_{1}, \ldots, x_{n}$ and domains $D_{1}, \ldots D_{n}$, a constraint satisfaction problem (CSP):

$$
\left\langle\mathbf{C} ; x_{1} \in D_{1}, \ldots, x_{n} \in D_{n}\right\rangle
$$

where $\mathbf{C}$ is a set of constraints each on a subsequence of $x_{1}, \ldots, x_{n}$.
Example

$$
\begin{aligned}
& \left\langle\left\{\operatorname{Not} E q\left(x_{1}, x_{2}\right), \operatorname{NotEq}\left(x_{1}, x_{3}\right), \operatorname{NotEq}\left(x_{2}, x_{3}\right)\right\},\right. \\
& \left.x_{1} \in\{0,1,2\}, x_{2} \in\{0,1,2\}, x_{3} \in\{0,1,2\}\right\rangle
\end{aligned}
$$

is a CSP. We often use shorthands for the constrains and write
$\left\langle\left\{x_{1} \neq x_{2}, x_{1} \neq x_{3}, x_{2} \neq x_{3}\right\}, x_{1} \in\{0,1,2\}, x_{2} \in\{0,1,2\}, x_{3} \in\{0,1,2\}\right\rangle$

## -79.4201 Search Problems and Algorithms

## Example: Graph Coloring Problem

Given a graph $G$, the coloring problem can be encoded as a CSP as follows.

- For each node $v_{i}$ in the graph introduce a variable $V_{i}$ with the domain $\{1, \ldots, n\}$ where $n$ is the number of available colors.
- For each edge $\left(v_{i}, v_{j}\right)$ in the graph introduce a constraint $V_{i} \neq V_{j}$.
- This is a reduction of the coloring problem to a CSP because the solutions to the CSP correspond exactly to the solutions of the coloring problem:
a value assignment $\left\{V_{1} \mapsto t_{1}, \ldots, V_{n} \mapsto t_{n}\right\}$ satisfying all the constraints gives a valid coloring of the graph where node $v_{i}$ is colored with color $t_{i}$.


## CSPs II

- For a CSP $\left\langle\mathbf{C} ; x_{1} \in D_{1}, \ldots, x_{n} \in D_{n}\right\rangle$ a potential solution is given by a value assignment which a mapping $T$ from $\left\{x_{1}, \ldots, x_{n}\right\}$ to $D_{1} \cup \cdots \cup D_{n}$ such that for each variable $x_{i}, T\left(x_{i}\right) \in D_{i}$.
- A value assignment $T$ satisfies a constraint $C$ on variables $x_{i_{1}}, \ldots, x_{i_{m}}$ if $\left(T\left(x_{i_{1}}\right), \ldots, T\left(x_{i_{m}}\right)\right) \in C$.
- Example. A value assignment $T=\left\{x_{1} \mapsto 1, x_{2} \mapsto 2, \ldots, x_{n} \mapsto n\right\}$ satisfies the constraint NotEq on $x_{1}, x_{2}$ because $\left(T\left(x_{1}\right), T\left(x_{2}\right)\right)=(1,2) \in$ NotEq but $T^{\prime}=\left\{x_{1} \mapsto 1, x_{2} \mapsto 1, \ldots, x_{n} \mapsto 1\right\}$ does not as $\left(T^{\prime}\left(x_{1}\right), T^{\prime}\left(x_{2}\right)\right)=(1,1) \notin$ NotEq.
- A solution to a $\operatorname{CSP}\left\langle\mathbf{C}, x_{1} \in D_{1}, \ldots, x_{n} \in D_{n}\right\rangle$ is a value assignment that satisfies every constraint $C \in \mathbf{C}$.
Example. Consider a CSP
$\left\langle\left\{x_{1} \neq x_{2}, x_{1} \neq x_{3}, x_{2} \neq x_{3}\right\}, x_{1} \in\{0,1,2\}, x_{2} \in\{0,1,2\}, x_{3} \in\{0,1,2\}\right\rangle$
The assignment $\left\{x_{1} \mapsto 0, x_{2} \mapsto 1, x_{3} \mapsto 2\right\}$ is a solution to the CSP as it satisfies all the constraints but $\left\{x_{1} \mapsto 0, x_{2} \mapsto 1, x_{3} \mapsto 1\right\}$ is not as it does not satisfy the constraint $x_{2} \neq x_{3}\left(\operatorname{NotEq}\left(x_{2}, x_{3}\right)\right)$.


## -79.4201 Search Problems and Aloorithms

## Example: SEND + MORE = MONEY

- Replace each letter by a different digit so that

| SEND | 9567 |
| :--- | ---: |
| + MORE |  |
| MONEY | +1085 |
| 10652 |  |

is a correct sum.
The unique solution.

- Variables: S, E, N, D, M, O, R, Y
- Domains: [1..9] for S, M and [0..9] for E, N, D, O, R, Y
- Constraints:

$$
\begin{array}{r}
1000 \cdot S+100 \cdot E+10 \cdot N+D \\
+1000 \cdot M+100 \cdot O+10 \cdot R+E \\
=10000 \cdot M+1000 \cdot O+100 \cdot N+10 \cdot E+Y
\end{array}
$$

$x \neq y$ for every pair of variables $x, y$ in $\{\mathrm{S}, \mathrm{E}, \mathrm{N}, \mathrm{D}, \mathrm{M}, \mathrm{O}, \mathrm{R}, \mathrm{Y}\}$.

- It is easy to check that the value assignment

$$
\{S \mapsto 9, E \mapsto 5, N \mapsto 6, D \mapsto 7, M \mapsto 1, O \mapsto 0, R \mapsto 8, Y \mapsto 2\}
$$

satisfies the constraints, i.e., is a solution to the problem.

## N Queens

Problem: Place $n$ queens on a $n \times n$ chess board so that they do not attack each other.

- Variables: $x_{1}, \ldots, x_{n}$ ( $x_{i}$ gives the position of the queen on ith column)
- Domains: [1..n] for each $x_{i}, i=1, \ldots, n$
- Constraints: for $i \in[1 . . n-1]$ and $j \in[i+1 . . n]$ :
(i) $x_{i} \neq x_{j}$ (rows)
(ii) $x_{i}-x_{j} \neq i-j$ (SW-NE diagonals)
(iii) $x_{i}-x_{j} \neq j-i$ (NW-SE diagonals)
- When $n=10$, the value assignment $\left\{x_{1} \mapsto 3, x_{2} \mapsto 10, x_{3} \mapsto\right.$ $\left.7, x_{4} \mapsto 4, x_{5} \mapsto 1, x_{6} \mapsto 5, x_{7} \mapsto 2, x_{8} \mapsto 9, x_{9} \mapsto 6, x_{10} \mapsto 8\right\}$ gives a solution to the problem.


## T-79.4201 Seacch Pobiens and Aloorims

## Solving CSPs

- Constraints have varying computational properties.
- For some classes of constraints there are efficient special purpose algorithms (domain specific methods/constraint solvers).


## Examples

- Linear equations
- Linear programming
- Unification
- For others general methods consisting of
- constraint propagation algorithms and
- search methods
must be used.
- Different encodings of a problem as a CSP utilizing different sets of constraints can have substantial different computational properties.
- However, it is not obvious which encodings lead to the best computational performance.


## Constrained Optimization Problems

- Given: a CSP $P:=\left\langle\mathbf{C} ; x_{1} \in D_{1}, \ldots, x_{n} \in D_{n}\right\rangle$ and a function obj which maps solutions of the CSP to real numbers.
- $(P, o b j)$ is a constrained optimization problem (COP) where the task is to find a solution $T$ to $P$ for which the value $o b j(T)$ is optimal (minimal/maximal).
- Example. KNAPSACK: a knapsack of a fixed volume and $n$ objects, each with a volume and a value. Find a collection of these objects with maximal total value that fits in the knapsack.
- Representation as a COP:

Given: knapsack volume $v$ and $n$ objects with volumes $a_{1}, \ldots, a_{n}$ and values $b_{1}, \ldots, b_{n}$
Variables: $x_{1}, \ldots, x_{n}$
Domains: $\{0,1\}$
Constraint: $\sum_{i=1}^{n} a_{i} \cdot x_{i} \leq v$,
Objective function: $\sum_{i=1}^{n} b_{i} \cdot x_{i}$.

## -79.4201 Search Problems and Algorithms

## Constraints

- In the course we consider more carefully two classes of constraints: linear constraints and Boolean constraints.
- Linear constraints (Lectures 7-9) are an example of a class of constraints which has efficient special purpose algorithms.
- Now we consider Boolean constraints as an example of a class for which we need to use general methods based on propagation and search.
- However, boolean constraints are interesting because
- highly efficient general purpose methods are available for solving Boolean constraints;
- they provide a flexible framework for encoding (modelling) where it is possible to use combinations of constraints (with efficient support by solution techniques).


## Boolean Constraints

- A Boolean constraint $C$ on variables $x_{1}, \ldots, x_{n}$ with the domain \{true, false\} can be seen as a Boolean function $f_{C}:\{\text { true, false }\}^{n} \longrightarrow\{$ true, false $\}$ such that a value assignment $\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\}$ satisfies the constraint $C$ iff $f_{C}\left(t_{1}, \ldots, t_{n}\right)=$ true.
- Typically such functions are represented as propositional formulas.
- Solution methods for Boolean constraints exploit the structure of the representation of the constraints as formulas.


## T-79.4201 Search Problems and Aloorithms

## Propositional formulas

- Syntax (what are well-formed propositional formulas):

Boolean variables (atoms) $X=\left\{x_{1}, x_{2}, \ldots\right\}$
Boolean connectives $\vee, \wedge, \neg$

- The set of (propositional) formulas is the smallest set such that all Boolean variables are formulas and if $\phi_{1}$ and $\phi_{2}$ are formulas, so are $\neg \phi_{1},\left(\phi_{1} \wedge \phi_{2}\right)$, and $\left(\phi_{1} \vee \phi_{2}\right)$.
For example, $\left(\left(x_{1} \vee x_{2}\right) \wedge \neg x_{3}\right)$ is a formula but $\left(\left(x_{1} \vee x_{2}\right) \neg x_{3}\right)$ is not.
- A formula of the form $x_{i}$ or $\neg x_{i}$ is called a literal where $x_{i}$ is a Boolean variable.
- We employ usual shorthands:
$\phi_{1} \rightarrow \phi_{2}: \neg \phi_{1} \vee \phi_{2}$
$\phi_{1} \leftrightarrow \phi_{2}:\left(\neg \phi_{1} \vee \phi_{2}\right) \wedge\left(\neg \phi_{2} \vee \phi_{1}\right)$
$\phi_{1} \oplus \phi_{2}:\left(\neg \phi_{1} \wedge \phi_{2}\right) \vee\left(\phi_{1} \wedge \neg \phi_{2}\right)$


## Example: Graph coloring

- Consider the problem of finding a 3-coloring for a graph.
- This can be encoded as a set of Boolean constraints as follows:
- For each vertex $v \in V$, introduce three Boolean variables $v_{1}, v_{2}, v_{3}$ (intuition: $v_{i}$ is true iff vertex $v$ is colored with color $i$ ).
- For each vertex $v \in V$ introduce the constraints

$$
\begin{aligned}
& v_{1} \vee v_{2} \vee v_{3} \\
& \left(v_{1} \rightarrow \neg v_{2}\right) \wedge\left(v_{1} \rightarrow \neg v_{3}\right) \wedge\left(v_{2} \rightarrow \neg v_{3}\right)
\end{aligned}
$$

- For each edge $(v, u) \in E$ introduce the constraint

$$
\left(v_{1} \rightarrow \neg u_{1}\right) \wedge\left(v_{2} \rightarrow \neg u_{2}\right) \wedge\left(v_{3} \rightarrow \neg u_{3}\right)
$$

- Now 3-colorings of a graph $(V, E)$ and solutions to the Boolean constraints (satisfying truth assignments) correspond: vertex $v$ colored with color $i$ iff $v_{i}$ assigned true in the solution.


## T-79.4201 Search Problems and Algorithms

## Semantics

- Atomic proposition (Boolean variables) are either true or false and this induces a truth value for any formula as follows.
- A truth assignment $T$ is mapping from a finite subset $X^{\prime} \subset X$ to the set of truth values $\{$ true, false $\}$.
- Consider a truth assignment $T: X^{\prime} \longrightarrow\{$ true, false $\}$ which is appropriate to $\phi$, i.e., $X(\phi) \subseteq X^{\prime}$ where $X(\phi)$ be the set of Boolean variables appearing in $\phi$.
- $T \models \phi$ ( $T$ satisfies $\phi$ ) is defined inductively as follows:

If $\phi$ is a variable, then $T \models \phi$ iff $T(\phi)=$ true.
If $\phi=\neg \phi_{1}$, then $T \models \phi$ iff $T \not \models \phi_{1}$
If $\phi=\phi_{1} \wedge \phi_{2}$, then $T \models \phi$ iff $T \models \phi_{1}$ and $T \models \phi_{2}$
If $\phi=\phi_{1} \vee \phi_{2}$, then $T \models \phi$ iff $T \models \phi_{1}$ or $T \models \phi_{2}$
Example
Let $T\left(x_{1}\right)=$ true, $T\left(x_{2}\right)=$ false.
Then $T \models x_{1} \vee x_{2}$ but $T \not \models\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \wedge x_{2}\right)$

## Representing Boolean Functions

- A propositional formula $\phi$ with variables $x_{1}, \ldots, x_{n}$ expresses a $n$-ary Boolean function $f$ if for any $n$-tuple of truth values $\mathbf{t}=\left(t_{1}, \ldots, t_{n}\right), f(\mathbf{t})=\mathbf{t r u e}$ if $T \models \phi$ and $f(\mathbf{t})=$ false if $T \not \models \phi$ where $T\left(x_{i}\right)=t_{i}, i=1, \ldots, n$.
Proposition. Any $n$-ary Boolean function $f$ can be expressed as a propositional formula $\phi_{f}$ involving variables $x_{1}, \ldots, x_{n}$.
- The idea: model each case of the function $f$ having value true as a disjunction of conjunctions.
- Let $F$ be the set of all $n$-tuples $\mathbf{t}=\left(t_{1}, \ldots, t_{n}\right)$ with $f(\mathbf{t})=$ true. For each $\mathbf{t}$, let $D_{\mathbf{t}}$ be a conjunction of literals $x_{i}$ if $t_{i}=$ true and $\neg x_{i}$ if $t_{i}=$ false.
Example.

| $x_{1}$ | $x_{2}$ | $f$ |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
| $\phi_{f}=$ |  |  |
| $\left(\neg x_{1} \wedge x_{2}\right) \vee$ |  |  |
| $\left(x_{1} \wedge \neg x_{2}\right)$ |  |  |

- Let $\phi_{f}=V_{t \in F} D_{\mathrm{t}}$


## Logical Equivalence

Definition
Formulas $\phi_{1}$ and $\phi_{2}$ are equivalent $\left(\phi_{1} \equiv \phi_{2}\right)$ iff for all truth assignments $T$ appropriate to both of them, $T \models \phi_{1}$ iff $T \models \phi_{2}$.
Example
$\left(\phi_{1} \vee \phi_{2}\right) \equiv\left(\phi_{2} \vee \phi_{1}\right)$
$\left(\left(\phi_{1} \wedge \phi_{2}\right) \wedge \phi_{3}\right) \equiv\left(\phi_{1} \wedge\left(\phi_{2} \wedge \phi_{3}\right)\right)$
$\neg \neg \phi \equiv \phi$
$\left(\left(\phi_{1} \wedge \phi_{2}\right) \vee \phi_{3}\right) \equiv\left(\left(\phi_{1} \vee \phi_{3}\right) \wedge\left(\phi_{2} \vee \phi_{3}\right)\right)$
$\neg\left(\phi_{1} \wedge \phi_{2}\right) \equiv\left(\neg \phi_{1} \vee \neg \phi_{2}\right)$
$\left(\phi_{1} \vee \phi_{1}\right) \equiv \phi_{1}$

- Simplified notation:
$\left(\left(\left(x_{1} \vee \neg x_{3}\right) \vee x_{2}\right) \vee x_{4} \vee\left(x_{2} \vee x_{5}\right)\right)$ is written as
$x_{1} \vee \neg x_{3} \vee x_{2} \vee x_{4} \vee x_{2} \vee x_{5} \quad$ or $\quad x_{1} \vee \neg x_{3} \vee x_{2} \vee x_{4} \vee x_{5}$
- $\bigvee_{i=1}^{n} \varphi_{i}$ stands for $\varphi_{1} \vee \cdots \vee \varphi_{n}$
$\bigwedge_{i=1}^{n} \varphi_{i}$ stands for $\varphi_{1} \wedge \cdots \wedge \varphi_{n}$

T-79.4201 Search Problems and Algorithms

## Normal Form Transformations

CNF/DNF transformation:

1. remove $\leftrightarrow$ and $\rightarrow$ :

$$
\begin{aligned}
& \alpha \leftrightarrow \beta \quad \leadsto \quad(\neg \alpha \vee \beta) \wedge(\neg \beta \vee \alpha) \\
& \alpha \rightarrow \beta \quad \leadsto \quad \neg \alpha \vee \beta \quad \text { (2) }
\end{aligned}
$$

2. Push negations in front of Boolean variables:

$$
\begin{array}{lll}
\neg \neg \alpha & \leadsto \alpha & \text { (3) } \\
\neg(\alpha \vee \beta) & \leadsto \neg \alpha \wedge \neg \beta & \text { (4) } \\
\neg(\alpha \wedge \beta) & \leadsto & \leadsto \alpha \vee \neg \beta
\end{array}
$$

3. CNF: move $\wedge$ connectives outside $\vee$ connectives:

$$
\begin{aligned}
& \alpha \vee(\beta \wedge \gamma) \quad \leadsto \quad(\alpha \vee \beta) \wedge(\alpha \vee \gamma) \\
& (\alpha \wedge \beta) \vee \gamma \quad(6)
\end{aligned}
$$

DNF: move $\vee$ connectives outside $\wedge$ connectives: $\alpha \wedge(\beta \vee \gamma) \sim(\alpha \wedge \beta) \vee(\alpha \wedge \gamma) \quad$ (8) $(\alpha \vee \beta) \wedge \gamma \quad(\alpha \wedge \gamma) \vee(\beta \wedge \gamma)$
(9)

## Example

Transform $(A \vee B) \rightarrow(B \leftrightarrow C)$ to CNF.
$(A \vee B) \rightarrow(B \leftrightarrow C)$
$\neg(A \vee B) \vee((\neg B \vee C) \wedge(\neg C \vee B))$
$(\neg A \wedge \neg B) \vee((\neg B \vee C) \wedge(\neg C \vee B)) \quad(7)$
$(\neg A \vee((\neg B \vee C) \wedge(\neg C \vee B))) \wedge(\neg B \vee((\neg B \vee C) \wedge(\neg C \vee B)))(6)$
$((\neg A \vee(\neg B \vee C)) \wedge(\neg A \vee(\neg C \vee B))) \wedge(\neg B \vee((\neg B \vee C) \wedge(\neg C \vee B)))(6)$
$((\neg A \vee(\neg B \vee C)) \wedge(\neg A \vee(\neg C \vee B))) \wedge((\neg B \vee(\neg B \vee C)) \wedge(\neg B \vee(\neg C \vee B)$
$(\neg A \vee \neg B \vee C) \wedge(\neg A \vee \neg C \vee B) \wedge(\neg B \vee \neg B \vee C) \wedge(\neg B \vee \neg C \vee B)$

- We can assume that normal forms do not have repeated clauses/implicants or repeated literals in clauses/implicants (for example $(\neg B \vee \neg B \vee C) \equiv(\neg B \vee C)$ ).
- Normal form can be exponentially bigger than the original formula in the worst case.


## Boolean Circuits

- Normal forms are often quite an unnatural way of encoding problems and it is more convenient to use full propositional logic.
- In many applications the encoding is of considerable size and different parts of the encoding have a substantial amount of common substructure.
- Boolean circuits offer an attractive formalism for representing the required Boolean functions where compactness is enhanced by sharing common substructure.

Example. Boolean Circuit

$s\left(v_{1}\right)=$ and $/ 2$
$s\left(v_{2}\right)=o r / 3$
$s\left(v_{2}\right)=$ equiv $/ 2$
$v_{1}$ is the output gate of the circuit
$v_{4}, v_{5}, v_{6}$ are the input gates

## Boolean Circuits-Semantics

- For a circuit a truth assignment $T: X(C) \longrightarrow\{$ true, false $\}$ gives a truth assignment to each gate in $X(C)$ where $X(C)$ is the set of input gates of $C$.
- This defines a truth value $T(g)$ for each gate $g$ inductively when the gates are ordered topologically in a sequence so that no gate appears in the sequence before its input gates (this is always possible because the circuit is acyclic):
- If $g \in X(C)$, then the truth assignment $T(g)$ gives the truth value.
- Otherwise $T(g)=f\left(T\left(g_{1}\right), \ldots, T\left(g_{n}\right)\right)$ where $\left(g_{1}, g\right), \ldots$ and $\left(g_{n}, g\right)$ are the edges entering $g$ and $f$ is the Boolean function $s(g)$ associated to $g$.

Example. For the previous example circuit $C, X(C)=\left\{v_{4}, v_{5}, v_{6}\right\}$.
For a truth assignment $T\left(v_{4}\right)=T\left(v_{5}\right)=T\left(v_{6}\right)=$ false,
$T\left(v_{3}\right)=\operatorname{equiv}($ false, false $)=$ true,$T\left(v_{2}\right)=$ false, $T\left(v_{1}\right)=$ false.

## -79.4201 Search Problems and Algorithms

## Boolean Circuits vs. Propositional Formulas

- For each propositional formula $\phi$, there is a corresponding Boolean circuit $C_{\phi}$ such that for any $T$ appropriate for both, $T\left(g_{\phi}\right)=$ true iff $T \models \phi$ for an output gate $g_{\phi}$ of $C_{\phi}$. Idea: just introduce a new gate for each subexpression.
$(a \vee b) \wedge(\neg a \vee b) \wedge$
$(a \vee \neg b) \wedge(\neg a \vee \neg b)$

- For each Boolean circuit $C$, there is a corresponding formula $\phi_{C}$.
- Notice that Boolean circuits allow shared subexpressions but formulas do not.
For instance, in the circuit above gates $a, b, c, d$.


## Circuit Satisfiability Problem

- An interesting computational (search) problem related to circuits is the circuit satisfiability problem.
- A constrained Boolean circuit is a pair $(C, \alpha)$ with a circuit $C$ and constraints $\alpha$ assigning truth values for some gates.
- Given a constrained Boolean circuit ( $C, \alpha$ ) a truth assignment $T$ satisfies $(C, \alpha)$ if it satisfies the constraints $\alpha$, i.e., for each gate $g$ for which $\alpha$ gives a truth value, $\alpha(g)=T(g)$ holds.
- CIRCUIT SAT problem: Given a constrained Boolean circuit find a truth assignment $T$ that satisfies it.
Example. Consider the circuit with constraints $\alpha\left(v_{4}\right)=$ false, $\alpha\left(v_{1}\right)=$ true .
This circuit has a satisfying truth assignment $T\left(v_{4}\right)=$ false, $T\left(v_{5}\right)=T\left(v_{6}\right)=$ true. If the constraints are $\alpha\left(v_{2}\right)=$ false, $\alpha\left(v_{1}\right)=$ true, the circuit is unsatisfiable.



## Circuits Compute Boolean Functions

- A Boolean circuit with output gate $g$ and variables $x_{1}, \ldots, x_{n}$ computes an $n$-ary Boolean function $f$ if for any $n$-tuple of truth values $\mathbf{t}=\left(t_{1}, \ldots, t_{n}\right), f(\mathbf{t})=T(g)$ where $T\left(x_{i}\right)=t_{i}, i=1, \ldots, n$.
- Any $n$-ary Boolean function $f$ can be computed by a Boolean circuit involving variables $x_{1}, \ldots, x_{n}$.
- Not every Boolean function can be computed using a concise circuit.

Theorem
For any $n \geq 2$ there is an $n$-ary Boolean function $f$ such that no Boolean circuit with $\frac{2^{n}}{2 n}$ or fewer gates can compute it.

## Boolean Circuits as Equation Systems

A Boolean circuit can be written as a system of equations.

$$
\begin{aligned}
& v=\operatorname{and}(e, f, g, h) \\
& e=\operatorname{or}(a, b) \\
& f=\operatorname{or}(b, c) \\
& g=\operatorname{or}(a, d) \\
& h=\operatorname{or}(c, d) \\
& c=\operatorname{not}(a) \\
& d=\operatorname{not}(b)
\end{aligned}
$$

## Boolean Modelling

- Propositional formulas/Boolean circuits offer a natural way of modelling many interesting Boolean functions.
- Example. IF-THEN-ELSE ite $(a, b, c)$ (if $a$ then $b$ else $c$.). As a formula:
ite $(a, b, c) \equiv(a \wedge b) \vee(\neg a \wedge c)$
As a circuit:
ite $=\operatorname{or}\left(i_{1}, i_{2}\right)$
$i_{1}=\operatorname{and}(a, b)$
$i_{2}=\operatorname{and}\left(a_{1}, c\right)$
$a_{1}=\operatorname{not}(a)$
- Given gates $a, b, c$, ite $(a, b, c)$ can be thought as a shorthand for a subcircuit given above.
- In the bczchaff tool used in the course ite $(a, b, c)$ is provided as a primitive gate functions.


## Example

Binary adder. Given input bits $a, b$ and $c$
compute output bits $O_{2} O_{1}$ which give the sum of $a, b$, and $c$ in binary.
As a formula:
$o_{1} \equiv((a \oplus b) \oplus c)$
$o_{2} \equiv(a \wedge b) \vee(c \wedge(a \oplus b)$

## As a circuit:

$o_{1}=\operatorname{xor}(x, c)$
$o_{2}=\operatorname{or}(I, r)$
$I=\operatorname{and}(a, b)$
$r=\operatorname{and}(c, x)$
$x=\operatorname{xor}(a, b)$

## Example. Reachability

Given a graph $G=(\{1, \ldots, n\}, E)$, constructs a circuit $R(G)$ such that $R(G)$ is satisfiable iff there is a path from 1 to $n$ in $G$.

- The gates of $R(G)$ are of the form
$g_{i j k}$ with $1 \leq i, j \leq n$ and $0 \leq k \leq n$
$h_{i j k}$ with $1 \leq i, j, k \leq n$
- $g_{i j k}$ is true: there is a path in $G$ from $i$ to $j$ not using any intermediate node bigger than $k$.
- $h_{i j k}$ is true: there is a path in $G$ from $i$ to $j$ not using any intermediate node bigger than $k$ but using $k$.


## Example-cont'd

$R(G)$ is the following circuit:

- For $k=0, g_{i j k}$ is an input gate.
- For $k=1,2, \ldots, n$ :
$h_{i j k}=\operatorname{and}\left(g_{i k(k-1)}, g_{k j(k-1)}\right)$
$g_{i j k}=\operatorname{or}\left(g_{i j(k-1)}, h_{i j k}\right)$
- $g_{1 n n}$ is the output gate of $R(G)$.
- Constraints $\alpha$ :

For the output gate: $\alpha\left(g_{1 n n}\right)=$ true
For the input gates: $\alpha\left(g_{i j 0}\right)=$ true if $i=j$ or $(i, j)$ is an edge in $G$ else $\alpha\left(g_{i j}\right)=$ false.

## E7992001 Sacach Probems and Alocilims <br> From Circuits to CNF

- Translating Boolean Circuits to an equivalent CNF formula can lead to exponential blow-up in the size of the formula.
- Often exact equivalence is not necessary but auxiliary variables can be used as long as at least satisfiability is preserved.
- Then a linear size CNF representation can be obtained, e.g., using the co-called Tseitin's translation where given a Boolean circuit $C$ the corresponding CNF formula is obtained as follows
- a new variable is introduced to each gate of the circuit,
- the set of clauses in the normal form consists of the gate equation (taken as an equivalence) written in a clausal form for each intermediate and output gate with
- for each constraint $\alpha(g)=t$, the corresponding literal for $g$ added.
- This transformation preserves satisfiability and even truth assignments in the following sense:
if $C$ is a Boolean circuit and $\Sigma$ its Tseitin translation, then for every truth assignment $T$ of $C$ there is a satisfying truth assignment $T^{\prime}$ of $\Sigma$ which agrees with $T$ and vice versa.


## From Circuits to CNF II

Example.


Consider the circuit with constraints
$\alpha\left(v_{1}\right)=$ true,$\alpha\left(v_{4}\right)=$ false.
Gate equations (taken as equivalences)
for non-input gates:
$v_{1} \leftrightarrow\left(v_{2} \wedge v_{3}\right)$
$v_{2} \leftrightarrow\left(v_{4} \vee v_{5} \vee v_{6}\right)$
$v_{3} \leftrightarrow\left(v_{5} \leftrightarrow v_{6}\right)$
The resulting CNF for the translation:

$$
\begin{gathered}
\left(\neg v_{1} \vee v_{2}\right) \wedge\left(\neg v_{1} \vee v_{3}\right) \wedge\left(v_{1} \vee \neg v_{2} \vee \neg v_{3}\right) \wedge \\
\left(v_{2} \vee \neg v_{4}\right) \wedge\left(v_{2} \vee \neg v_{5}\right) \wedge\left(v_{2} \vee \neg v_{6}\right) \wedge\left(\neg v_{2} \vee v_{4} \vee v_{5} \vee v_{6}\right) \wedge \\
\left(v_{3} \vee v_{5} \vee v_{6}\right) \wedge\left(v_{3} \vee \neg v_{5} \vee \neg v_{6}\right) \wedge\left(\neg v_{3} \vee v_{5} \vee \neg v_{6}\right) \wedge\left(\neg v_{3} \vee \neg v_{5} \vee v_{6}\right) \wedge \\
v_{1} \wedge \neg v_{4} \text { [for constraints] }
\end{gathered}
$$

