Tutorial 3, 4 October
 Problems

1. Draw the search space corresponding to the 3-SAT formula

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right)
$$

as a cube, and mark down at the corners of this cube the values of the objective function indicating the number of unsatisfied clauses at each point ($=$ truth assignment).
2. Determine an optimal TSP route for the problem instance given below, using the Branch and Bound method discussed at the lectures.

3. Design a Branch and Bound method for solving the MAX CUT optimisation problem discussed in Problem 4 of last week's tutorial. Indicate in particular what is your notion of a partial solution, and what upper bounding heuristic you are using to prune the search. Present a small example of how your method works.
4. Consider the relationship between branch-and-bound optimisation and the A^{*} algorithm. Reformulate the branch-and-bound approach to solving the TSP problem discussed at last week's lecture as an A* graph search. What are the nodes, edges and edge costs of the search graph? What are the functions f, g and h used in the A^{*} algorithm in this case?

