T-79.4201 Search Problems and Algorithms

12 Complexity of Search

Combinatorial Phase Transitions

Complexity of Local Search

12.1 Combinatorial Phase Transitions

"Where the Really Hard Problems Are" (Cheeseman et al. 1991)

- ▶ Many NP-complete problems can be solved in polynomial time "on average" or "with high probability" for reasonable-looking distributions of problem instances. E.g. Satisfiability in time $o(n^2)$ (Goldberg et al. 1982), Graph Colouring in time $o(n^2)$ (Turner 1988).
- ▶ Where, then, are the (presumably) exponentially hard instances of these problems located? Could one tell ahead of time whether a given instance is likely to be hard?
- ► Early studies: Yu & Anderson (1985), Hubermann & Hogg (1987), Cheeseman, Kanefsky & Taylor (1991), Mitchell, Selman & Levesque (1992), Kirkpatrick & Selman (1994), etc.

I.N. & P.O. Spring 2006

I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms

Hard instances for 3-SAT (1/4)

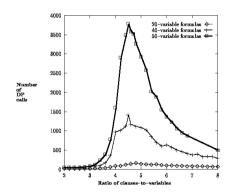
- ► Mitchell, Selman & Levesque, AAAI-92
- Experiments on the behaviour of the DPLL procedure on randomly generated 3-cnf Boolean formulas.
- ▶ Distribution of test formulas:
 - \triangleright n = number of variables
 - $m = \alpha n$ randomly generated clauses of 3 literals, $2 \le \alpha \le 8$
- ► For sets of 500 formulas with n = 20/40/50 and various α , Mitchell et al. plotted the median number of recursive DPLL calls required for solution.

I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms

T-79.4201 Search Problems and Algorithms

Hard instances for 3-SAT (2/4)

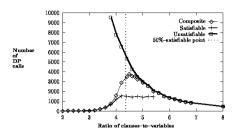


Results:

- ▶ A distinct peak in median running times at about clauses-to-variables ratio $\alpha \approx 4.5$.
- ▶ Peak gets more pronounced for increasing n ⇒ well-defined "delta" distribution for infinite n?

I.N. & P.O. Spring 2006

Hard instances for 3-SAT (3/4)



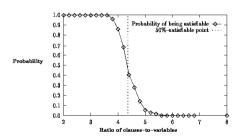
Further observations:

- ► The runtime peak seems to be located near the point where 50% of formulas are satisfiable.
- ► The peak seems to be caused by relatively short unsatisfiable formulas.

.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms

The satisfiability transition (1/2)



Mitchell et al. (1992): The "50% satisfiable" point or "satisfiability threshold" for 3-SAT seems to be located at $\alpha \approx$ 4.25 for large n.

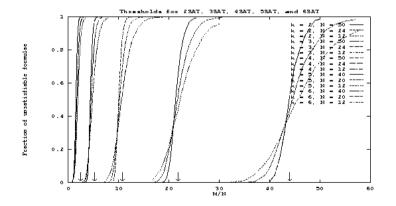
T-79.4201 Search Problems and Algorithms

Question: Is the connection of the running time peak and the satisfiability threshold a characteristic of the DPLL algorithm, or a (more or less) algorithm independent "universal" feature?

I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms

The satisfiability transition (2/2)



Kirkpatrick & Selman (1994):

Similar experiments as above for k-SAT, k = 2, ..., 6, 10000 formulas per data point.

► The "satisfiability threshold" α_c shifts quickly to larger values of α for increasing k.

I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms

Statistical mechanics of k-SAT (2/4)

Estimates of α_c for various values of k via "annealing approximation", "replica theory", and observation:

k	$lpha_{\it ann}$	$lpha_{rep}$	$lpha_{obs}$
2	2.41	1.38	1.0
3	5.19	4.25	4.17 ± 0.03
4	10.74	9.58	9.75 ± 0.05
5	21.83	20.6	20.9 ± 0.1
6	44.01	42.8	43.2 ± 0.2

Statistical mechanics of k-SAT (1/4)

Kirkpatrick & Selman, Science 1994

A "spin glass" model of a *k*-cnf formula:

- ▶ variables x_i ~ spins with states ± 1
- ightharpoonup clauses $c \sim k$ -wise interactions between spins
- truth assignment $\sigma \sim$ state of spin system
- ▶ Hamiltonian $H(\sigma)$ ~ number of clauses unsatisfied by σ
- ho α_c \sim critical "interaction density" point for "phase transition" from "satisfiable phase" to "unsatisfiable phase"

I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms

Statistical mechanics of k-SAT (3/4)

The "annealing approximation" means simply assuming that the different clauses are satisfied independently. This leads to the following estimate:

- Probability that given clause *c* is satisfied by random σ: $p_k = 1 2^{-k}$.
- Probability that random σ satisfies all $m = \alpha n$ clauses assuming independence: $p_{\nu}^{\alpha n}$.
- ► $E[\text{number of satisfying assignments}] = 2^n p_k^{\alpha n} \triangleq S_k^n(\alpha).$
- ► For large n, $S_k^n(\alpha)$ falls rapidly from 2^n to 0 near a critical value $\alpha = \alpha_c$. Where is α_c ?
- ▶ One approach: solve for $S_k^n(\alpha) = 1$.

$$S_k^n(\alpha) = 1 \Leftrightarrow 2p_k^{\alpha} = 1$$
$$\Leftrightarrow \alpha = -\frac{1}{\log_2 p_k} = -\frac{\ln 2}{\ln(1 - 2^{-k})} \approx \frac{\ln 2}{2^{-k}} = (\ln 2) \cdot 2^k$$

4□ > 4同 > 4 □ > 4 □ > □

Statistical mechanics of k-SAT (4/4)

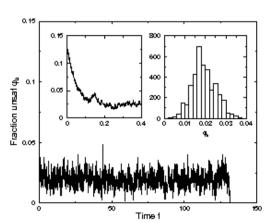
It is in fact known that:

- ► A sharp satisfiability threshold α_c exists for all $k \ge 2$ (Friedgut 1999).
- ► For k = 2, $\alpha_c = 1$ (Goerdt 1982, Chvátal & Reed 1982). Note that 2-SAT \in P.
- ► For k = 3, 3.14 < α_c < 4.51 (lower bound due to Achlioptas 2000, upper bound to ???).
- ► Current best empirical estimate for k = 3: $\alpha_c \approx 4.267$ (Braunstein et al. 2002).
- ► For large k, $\alpha_c \sim (\ln 2) \cdot 2^k$ (Achlioptas & Moore 2002).

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Dynamics of local search



12.2 Complexity of Local Search

- ▶ Good experiences for 3-SAT in the satisfiable region $\alpha < \alpha_c$: e.g. GSAT (Selman et al. 1992), WalkSAT (Selman et al. 1996).
- Focusing the search on unsatisfied clauses seems to be an important technique: in the (unsystematic) experiments in Selman et al. (1996), WalkSAT (focused) outperforms NoisyGSAT (unfocused) by several orders of magnitude.

◆□▶ ◆□▶ ◆■▶ ◆■ ● ♥

I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms

A WalkSAT run with p=1 ("focused random walk") on a randomly generated 3-SAT instance, $\alpha=3$, n=500: evolution in the fraction of unsatisfied clauses (Semerjian & Monasson 2003).

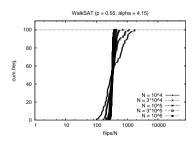
Some recent results and conjectures

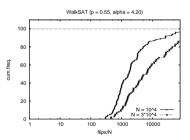
- ▶ Barthel, Hartmann & Weigt (2003), Semerjian & Monasson (2003): WalkSAT with p=1 has a "dynamical phase transition" at $\alpha_{\text{dyn}}\approx 2.7-2.8$. When $\alpha<\alpha_{\text{dyn}}$, satisfying assignments are found in linear time per variable (i.e. in a total of cn "flips"), when $\alpha>\alpha_{\text{dyn}}$ exponential time is required.
- ▶ Explanation: for $\alpha > \alpha_{\text{dyn}}$ the search equilibrates at a nonzero energy level, and can only escape to a ground state through a large enough random fluctuation.
- ► Conjecture: all local search algorithms will have difficulties beyond the so called "clustering transition" at $\alpha \approx 3.92 3.93$ (Mézard, Monasson, Weigt et al.)

I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms

WalkSAT linear scaling





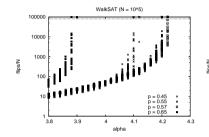
Cumulative solution time distributions for WalkSAT with p = 0.55.

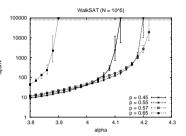
4 D > 4 A > 4 B > 4 B > 9 Q Q

T-79.4201 Search Problems and Algorithms

Some WalkSAT experiments

For p > 1, the α_{dyn} barrier for linear solution times can be broken (Aurell & Kirkpatrick 2004; Seitz, Alava & Orponen 2005).





Normalised (flips/n) solution times for finding satisfying assignments using WalkSAT, $\alpha = 3.8...4.3$.

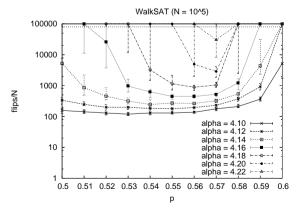
Left: complete data; right: medians and quartiles.

Data suggest linear solution times for $\alpha \gg \alpha_{dvn} \approx 2.7$.

I.N. & P.O. Spring 2006

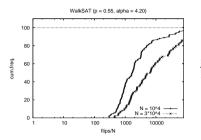
T-79.4201 Search Problems and Algorithms

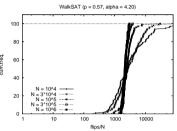
WalkSAT optimal noise level?



Normalised solution times for WalkSAT with p = 0.50...0.60, $\alpha = 4.10...4.22$.

WalkSAT sensitivity to noise





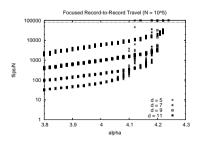
Cumulative solution time distributions for WalkSAT at $\alpha = 4.20$ with p = 0.55 and p = 0.57.

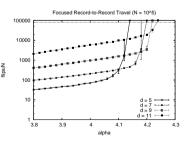
(□ > ◀圖 > ◀불 > ◀불 > □ ♥ 9 Q @

I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms

FRRT experiments (3-SAT)





Normalised solution times for FRRT, $\alpha = 3.8...4.3$. Left: complete data; right: medians and quartiles.

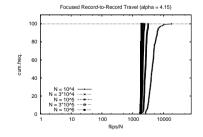
RRT applied to random 3-SAT

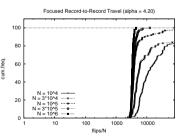
- ➤ Similar results as for WalkSAT are obtained with the Record-to-Record Travel algorithm.
- ▶ In applying RRT to SAT, E(s) = number of clauses unsatisfied by truth assignment s. Single-variable flip neighbourhoods.
- ► Focusing: flipped variables chosen from unsatisfied clauses. (Precisely: one unsatisfied clause is chosen at random, and from there a variable at random.) ⇒ FRRT = focused RRT.

I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms

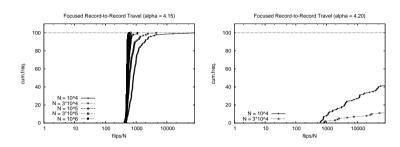
FRRT linear scaling (1/2)





Cumulative solution time distributions for FRRT with d = 9.

FRRT linear scaling (2/2)



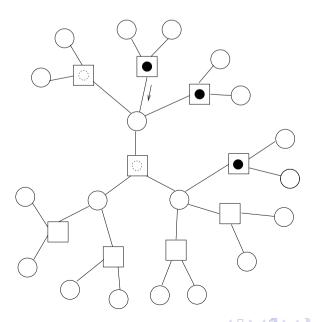
Cumulative solution time distributions for FRRT with d = 7.

| □ ト ◆ ■ ト ◆ 重 ト ◆ 重 ・ 夕 Q (^)

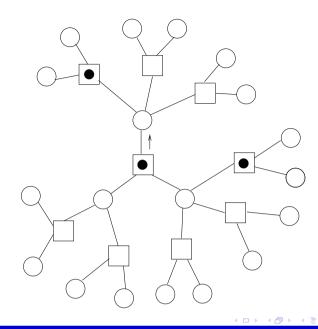
I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms

Focused search as a contact process



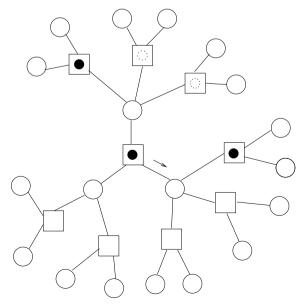
Focused search as a contact process



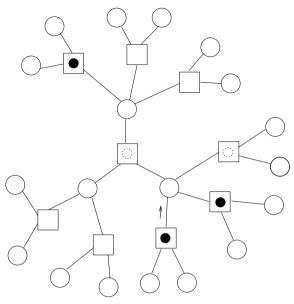
I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms

Focused search as a contact process



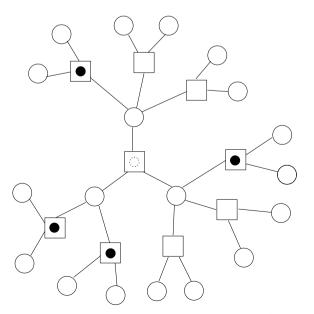
Focused search as a contact process



I.N. & P.O. Spring 2006

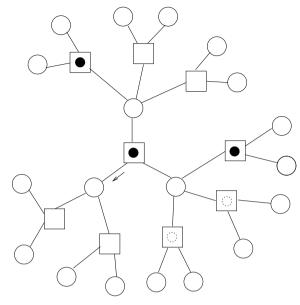
T-79.4201 Search Problems and Algorithms

Focused search as a contact process



|□▶ ◀∰▶ ◀불▶ ◀불▶ · 볼 · 쒸٩♡'

Focused search as a contact process



◆□▶ ◆□▶ ◆■▶ ◆■▶ ○○○

I.N. & P.O. Spring 2006