
T–79.4201 Search Problems and Algorithms

11 Novel Methods

I Evolutionary strategies

I Coevolutionary algorithms

I Ant algorithms

I The “No Free Lunch” theorem

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

11.1 Evolutionary Strategies

I Evolutionary methods for continuous optimisation (Bienert,
Rechenberg, Schwefel et al. 1960’s onwards). Unlike GA’s,
some serious convergence theory exists.

I Goal: maximise objective function f : R
n → R. Use

population consisting of individual points in R
n.

I Genetic operations:
I Mutation: Gaussian perturbation of point
I Recombination: Weighted interpolation of parent points
I Selection: Fitness computation based on f . Selection either

completely deterministic or probabilistic as in GA’s

I Typology of deterministic selection ES’s (Schwefel):
I Population size µ. λ offspring candidates generated by

recombinations of µ parents.
I (µ+λ)-selection: best µ individuals from µ parents and

λ offspring candidates together are selected.
I (µ,λ)-selection: best µ individuals from λ offspring candidates

alone are selected; all parents are discarded.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

11.2 Coevolutionary Genetic Algorithms (CGA)

I Hillis (1990), Paredis et al. (from mid-1990’s)

I Idea: coevolution of interacting populations of solutions
and tests/constraints as “hosts and parasites” or “prey and
predator”

I Goals:
1. Evolving solutions to satisfy a large & possibly implicit

set of constraints
2. Helping solutions escape from local minima by

adapting the “fitness landscape”

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Coevolution of sorting networks (1/3)

I Sorting networks: explicit designs for sorting a fixed
number n of elements

I E.g. sorting network representing “bubble sort” of n = 6
elements:

I Interpretation: elements flow from left to right along lines;
each connection (“gate”) indicates comparison of
corresponding elements, so that smaller element continues
along upper line and bigger element along lower line

I Quality measures: size = number of gates (comparisons),
depth (“parallel time”)

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Coevolution of sorting networks (2/3)

I Quite a bit of work in the 1960’s (cf. Knuth Vol. 3);
size-optimal networks known for n ≤ 8; for n > 8 the optimal
design problem gets difficult.

I “Classical” challenge: n = 16. A general construction of
Batcher & Knuth (1964) yields 63 gates; this was
unexpectedly beaten by Shapiro (1969) with 62 gates, and
later by Green (1969) with 60 gates. (Best known network.)

I Hillis (1990): Genetic and coevolutionary genetic
algorithms for the n = 16 sorting network design problem:

I Each individual represents a network with between 60 and 120
gates

I Genetic operations defined appropriately
I Individuals not guaranteed to represent proper sorting networks;

behaviour tested on a population of test cases
I Population sizes up to 65536 individuals, runs 5000 generations

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Coevolution of sorting networks (3/3)

I Result when population of test cases not evolved: 65-gate
sorting network

I Coevolution:
I Fitness of networks = % of test cases sorted correctly
I Fitness of test cases = % of networks fooled
I Also population of test cases evolves using appropriate genetic

operations

I Result of coevolution: a novel sorting network with 61
gates:

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

11.3 Ant Algorithms

I Dorigo et al. (1991 onwards), Hoos & Stützle (1997), . . .

I Inspired by experiment of real ants selecting the shorter of
two paths (Goss et al. 1989):

NEST FOOD

I Method: each ant leaves a pheromone trail along its path;
ants make probabilistic choice of path biased by the
amount of pheromone on the ground; ants travel faster
along the shorter path, hence it gets a differential
advantage on the amount of pheromone deposited.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Ant Colony Optimisation (ACO)

I Formulate given optimisation task as a path finding
problem from source s to some set of valid destinations
t1, . . . , tn (cf. the A∗ algorithm).

I Have agents (“ants”) search (in serial or parallel) for
candidate paths, where local choices among edges leading
from node i to neighbours j ∈ Ni are made probabilistically
according to the local “pheromone distribution” τij :

pij =
τij

∑j∈Ni
τij

.

I After an agent has found a complete path π from s to one
of the tk , “reward” it by an amount of pheromone
proportional to the quality of the path, 4τ ∝ q(π).

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

I Have each agent distribute its pheromone reward 4τ
among edges (i, j) on its path π: either as τij ← τij +4τ or
as τij ← τij +4τ/len(π).

I Between two iterations of the algorithm, have the
pheromone levels “evaporate” at a constant rate (1−ρ):

τij ← (1−ρ)τij .

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

ACO motivation

I Local choices leading to several good global results get
reinforced by pheromone accumulation.

I Evaporation of pheromone maintains diversity of search.
(I.e. hopefully prevents it getting stuck at bad local minima.)

I Good aspects of the method: can be distributed; adapts
automatically to online changes in the quality function q(π).

I Good results claimed for Travelling Salesman Problem,
Quadratic Assignment, Vehicle Routing, Adaptive Network
Routing etc.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

I Several modifications proposed in the literature:
(i) to exploit best solutions, allow only best agent of each
iteration to distribute pheromone;
(ii) to maintain diversity, set lower and upper limits on the
edge pheromone levels;
(iii) to speed up discovery of good paths, run some local
optimisation algorithm on the paths found by the agents;
etc.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

An ACO algorithm for the TSP (1/2)

I Dorigo et al. (1991)

I At the start of each iteration, m ants are positioned at
random start cities.

I Each ant constructs probabilistically a Hamiltonian tour π
on the graph, biased by the existing pheromone levels.
(NB. the ants need to remember and exclude the cities
they have visited during the search.)

I In most variations of the algorithm, the tours π are still
locally optimised using e.g. the Lin-Kernighan 3-opt
procedure.

I The pheromone award for a tour π of length d(π) is
4τ = 1/d(π), and this is added to each edge of the tour:
τij ← τij +1/d(π).

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

An ACO algorithm for the TSP (2/2)

I The local choice of moving from city i to city j is biased
according to weights:

aij =
τα

ij (1/dij)
β

∑j∈Ni
τα

ij (1/dij)β,

where α,β ≥ 0 are parameters controlling the balance
between the current strength of the pheromone trail τij vs.
the actual intercity distance dij .

I Thus, the local choice distribution at city i is:

pij =
aij

∑j∈N ′
i

aij
,

where N ′
i is the set of permissible neighbours of i after

cities visited earlier in the tour have been excluded.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

11.4 The “No Free Lunch” Theorem

I Wolpert & Macready 1997
I Basic content: All optimisation methods are equally good,

when averaged over uniform distribution of objective
functions.

I Alternative view: Any nontrivial optimisation method must
be based on assumptions about the space of relevant
objective functions. [However this is very difficult to make
explicit and hardly any results in this direction exist.]

I Corollary: one cannot say, unqualified, that ACO methods
are “better” than GA’s, or that Simulated Annealing is
“better” than simple Iterated Local Search. [Moreover as of
now there are no results characterising some nontrivial
class of functions F on which some interesting method A
would have an advantage over, say, random sampling of
the search space.]

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

The NFL theorem: definitions (1/3)

I Consider family F of all possible objective functions
mapping finite search space X to finite value space Y .

I A sample d from the search space is an ordered sequence
of distinct points from X , together with some associated
cost values from Y :

d = {(dx(1),dy(1)), . . . ,(dx(m),dy(m))}.

Here m is the size of the sample. A sample of size m is also
denoted by dm, and its projections to just the x- and
y-values by dx

m and dy
m, respectively.

I The set of all samples of size m is thus Dm = (X ×Y)m,
and the set of all samples of arbitrary size is D = ∪mDm.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

The NFL theorem: definitions (2/3)

I An algorithm is any function a mapping samples to
new points in the search space. Thus:

a : D → X , a(d) /∈ dx .

I Note 1: The assumption a(d) /∈ dx is made to simplify the
performance comparison of algorithms; i.e. one only takes
into account distinct function evaluations. Not all algorithms
naturally adhere to this constraint (e.g. SA, ILS), but
without it analysis is difficult.

I Note 2: The algorithm may in general be stochastic, i.e. a
given sample d ∈ D may determine only a distribution over
the points x ∈ X −dx .

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

The NFL theorem: definitions (3/3)

I A performance measure is any mapping Φ from cost value
sequences to real numbers (e.g. minimum, maximum,
average). Thus:

Φ : Y ∗ → R,

where Y ∗ = ∪mY
m:

I Finally, denote by P(dy
m | f ,m,a) the probability distribution

of value samples of size m obtained by using a (generally
stochastic) algorithm a to sample a (typically unknown)
function f ∈ F .

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

I More precisely, such a sample is obtained by starting from
some a-dependent search point dx(1), querying f for the
value dy(1) = f (dx(1)), using a to determine search point
dx(2) based on (dx(1),dy(1)), etc., up to search point
dx(m) and the associated value dy(m) = f (dx(m)). The
value sample dy

m is then obtained by projecting the full
sample dm to just the y-coordinates.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

The NFL theorem: statement

Theorem

[NFL] For any value sequence dy
m and any two algorithms a1

and a2:

∑
f∈F

P(dy
m | f ,m,a1) = ∑

f∈F

P(dy
m | f ,m,a2).

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

The NFL theorem: corollaries

Corollary

[1] Assume the uniform distribution of functions over F ,
P(f) = 1/|F | = |Y |−|X |. Then for any value sequence dy

m ∈ Y m

and any two algorithms a1 and a2:

P(dy
m | m,a1) = P(dy

m | m,a2).

Corollary

[2] Assume the uniform distribution of functions over F . Then
the expected value of any performance measure Φ over value
samples of size m,

E(Φ(dy
m) | m,a) = ∑

dy
m∈Y m

Φ(dy
m)P(dy

m | m,a),

is independent of the algorithm a used.

I.N. & P.O. Spring 2006

