11 Novel Methods

- Evolutionary strategies
- Coevolutionary algorithms
- Ant algorithms
- ► The "No Free Lunch" theorem

T-79.4201 Search Problems and Algorithms

11.1 Evolutionary Strategies

- Evolutionary methods for continuous optimisation (Bienert, Rechenberg, Schwefel et al. 1960's onwards). Unlike GA's, some serious convergence theory exists.
- Goal: maximise objective function *f* : ℝⁿ → ℝ. Use population consisting of individual points in ℝⁿ.
- Genetic operations:
 - Mutation: Gaussian perturbation of point
 - Recombination: Weighted interpolation of parent points
 - Selection: Fitness computation based on *f*. Selection either completely deterministic or probabilistic as in GA's
- Typology of deterministic selection ES's (Schwefel):
 - Population size μ. λ offspring candidates generated by recombinations of μ parents.
 - (μ+λ)-selection: best μ individuals from μ parents and λ offspring candidates together are selected.
 - (μ, λ) -selection: best μ individuals from λ offspring candidates alone are selected; all parents are discarded.

1 E 1

I.N. & P.O. Spring 2006 T–79.4201 Search Problems and Algorithms

11.2 Coevolutionary Genetic Algorithms (CGA)

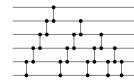
- Hillis (1990), Paredis et al. (from mid-1990's)
- Idea: coevolution of interacting populations of solutions and tests/constraints as "hosts and parasites" or "prey and predator"
- Goals:
 - 1. Evolving solutions to satisfy a large & possibly implicit set of constraints
 - 2. Helping solutions escape from local minima by adapting the "fitness landscape"

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Coevolution of sorting networks (1/3)

- Sorting networks: explicit designs for sorting a fixed number n of elements
- E.g. sorting network representing "bubble sort" of n = 6 elements:



- Interpretation: elements flow from left to right along lines; each connection ("gate") indicates comparison of corresponding elements, so that smaller element continues along upper line and bigger element along lower line
- Quality measures: size = number of gates (comparisons), depth ("parallel time")

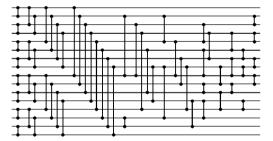
I.N. & P.O. Spring 2006

Coevolution of sorting networks (2/3)

- Quite a bit of work in the 1960's (cf. Knuth Vol. 3); size-optimal networks known for n ≤ 8; for n > 8 the optimal design problem gets difficult.
- "Classical" challenge: n = 16. A general construction of Batcher & Knuth (1964) yields 63 gates; this was unexpectedly beaten by Shapiro (1969) with 62 gates, and later by Green (1969) with 60 gates. (Best known network.)
- Hillis (1990): Genetic and coevolutionary genetic algorithms for the n = 16 sorting network design problem:
 - Each individual represents a network with between 60 and 120 gates
 - Genetic operations defined appropriately
 - Individuals not guaranteed to represent proper sorting networks; behaviour tested on a population of test cases
 - Population sizes up to 65536 individuals, runs 5000 generations

I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms



Coevolution of sorting networks (3/3)

- Result when population of test cases not evolved: 65-gate sorting network
- Coevolution:
 - Fitness of networks = % of test cases sorted correctly
 - Fitness of test cases = % of networks fooled
 - Also population of test cases evolves using appropriate genetic operations
- Result of coevolution: a novel sorting network with 61 gates:

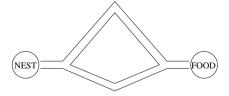
I.N. & P.O. Spring 2006

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

11.3 Ant Algorithms

- Dorigo et al. (1991 onwards), Hoos & Stützle (1997), …
- Inspired by experiment of real ants selecting the shorter of two paths (Goss et al. 1989):



Method: each ant leaves a pheromone trail along its path; ants make probabilistic choice of path biased by the amount of pheromone on the ground; ants travel faster along the shorter path, hence it gets a differential advantage on the amount of pheromone deposited.

Ant Colony Optimisation (ACO)

- Formulate given optimisation task as a path finding problem from source s to some set of valid destinations t₁,..., t_n (cf. the A* algorithm).
- ► Have agents ("ants") search (in serial or parallel) for candidate paths, where local choices among edges leading from node *i* to neighbours *j* ∈ N_i are made probabilistically according to the local "pheromone distribution" τ_{ij}:

$$oldsymbol{
ho}_{ij} = rac{ au_{ij}}{\sum_{j\in N_i} \ au_{ij}}.$$

After an agent has found a complete path π from s to one of the t_k, "reward" it by an amount of pheromone proportional to the quality of the path, Δτ ∝ q(π).

- Have each agent distribute its pheromone reward Δτ among edges (*i*,*j*) on its path π: either as τ_{ij} ← τ_{ij} + Δτ or as τ_{ij} ← τ_{ij} + Δτ/len(π).
- Between two iterations of the algorithm, have the pheromone levels "evaporate" at a constant rate (1 – ρ):

 $\tau_{ij} \leftarrow (1 - \rho) \tau_{ij}.$

- ▲ ロ ▶ ▲ 國 ▶ ▲ 国 ▶ ▲ 国 ● 今へ()

I.N. & P.O. Spring 2006

I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms

Several modifications proposed in the literature:
 (i) to exploit best solutions, allow only best agent of each iteration to distribute pheromone;

(ii) to maintain diversity, set lower and upper limits on the edge pheromone levels;

(iii) to speed up discovery of good paths, run some local optimisation algorithm on the paths found by the agents; etc.

T-79.4201 Search Problems and Algorithms

.N. & P.O. Spring 2006

ACO motivation

- Local choices leading to several good global results get reinforced by pheromone accumulation.
- Evaporation of pheromone maintains diversity of search.
 (I.e. hopefully prevents it getting stuck at bad local minima.)
- Good aspects of the method: can be distributed; adapts automatically to online changes in the quality function q(π).
- Good results claimed for Travelling Salesman Problem, Quadratic Assignment, Vehicle Routing, Adaptive Network Routing etc.

An ACO algorithm for the TSP (1/2)

- Dorigo et al. (1991)
- At the start of each iteration, *m* ants are positioned at random start cities.
- Each ant constructs probabilistically a Hamiltonian tour π on the graph, biased by the existing pheromone levels. (NB. the ants need to remember and exclude the cities they have visited during the search.)
- In most variations of the algorithm, the tours π are still locally optimised using e.g. the Lin-Kernighan 3-opt procedure.
- The pheromone award for a tour π of length $d(\pi)$ is $\triangle \tau = 1/d(\pi)$, and this is added to each edge of the tour: $\tau_{ij} \leftarrow \tau_{ij} + 1/d(\pi)$.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

11.4 The "No Free Lunch" Theorem

- Wolpert & Macready 1997
- Basic content: All optimisation methods are equally good, when averaged over uniform distribution of objective functions.
- Alternative view: Any nontrivial optimisation method must be based on assumptions about the space of relevant objective functions. [However this is very difficult to make explicit and hardly any results in this direction exist.]
- Corollary: one cannot say, unqualified, that ACO methods are "better" than GA's, or that Simulated Annealing is "better" than simple Iterated Local Search. [Moreover as of now there are *no* results characterising some nontrivial class of functions *f* on which some interesting method *A* would have an advantage over, say, random sampling of the search space.]

An ACO algorithm for the TSP (2/2)

The local choice of moving from city *i* to city *j* is biased according to weights:

$$m{a}_{ij} = rac{ au_{ij}^lpha (1/d_{ij})^eta}{\sum_{j\in N_i} \ au_{ij}^lpha (1/d_{ij})^eta},$$

where $\alpha, \beta \ge 0$ are parameters controlling the balance between the current strength of the pheromone trail τ_{ij} vs. the actual intercity distance d_{ij} .

▶ Thus, the local choice distribution at city *i* is:

$$p_{ij} = rac{a_{ij}}{\sum_{j \in N'_i} a_{ij}},$$

where N'_i is the set of permissible neighbours of *i* after cities visited earlier in the tour have been excluded.

I.N. & P.O. Spring 2006 T–79.4201 Search Problems and Algorithms

I.N. & P.O. Spring 2006

The NFL theorem: definitions (1/3)

- Consider family *f* of all possible objective functions mapping finite search space *x* to finite value space *f*.
- A sample d from the search space is an ordered sequence of distinct points from x, together with some associated cost values from y:

 $d = \{(d^{x}(1), d^{y}(1)), \dots, (d^{x}(m), d^{y}(m))\}.$

Here *m* is the *size* of the sample. A sample of size *m* is also denoted by d_m , and its projections to just the *x*- and *y*-values by d_m^x and d_m^y , respectively.

The set of all samples of size *m* is thus 𝔅 m = (x × 𝔅)^m, and the set of all samples of arbitrary size is 𝔅 = ∪_{m𝔅 m}.

The NFL theorem: definitions (2/3)

An algorithm is any function a mapping samples to new points in the search space. Thus:

 $a: \mathcal{D} \to x$, $a(d) \notin d^{x}$.

- Note 1: The assumption a(d) ∉ d^x is made to simplify the performance comparison of algorithms; i.e. one only takes into account *distinct* function evaluations. Not all algorithms naturally adhere to this constraint (e.g. SA, ILS), but without it analysis is difficult.
- Note 2: The algorithm may in general be stochastic, i.e. a given sample *d* ∈ *D* may determine only a *distribution* over the points *x* ∈ *x* − *d*^{*x*}.

I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms

► More precisely, such a sample is obtained by starting from some *a*-dependent search point *d^x*(1), querying *f* for the value *d^y*(1) = *f*(*d^x*(1)), using *a* to determine search point *d^x*(2) based on (*d^x*(1), *d^y*(1)), etc., up to search point *d^x*(*m*) and the associated value *d^y*(*m*) = *f*(*d^x*(*m*)). The value sample *d^y_m* is then obtained by projecting the full sample *d_m* to just the *y*-coordinates.

The NFL theorem: definitions (3/3)

 A performance measure is any mapping Φ from cost value sequences to real numbers (e.g. minimum, maximum, average). Thus:

 $\Phi: \gamma^* \to \mathbb{R},$

where $\gamma^* = \bigcup_m \gamma^m$:

Finally, denote by P(d^y_m | f, m, a) the probability distribution of value samples of size *m* obtained by using a (generally stochastic) algorithm *a* to sample a (typically unknown) function f ∈ f.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

The NFL theorem: statement

Theorem

[NFL] For any value sequence d_m^{γ} and any two algorithms a_1 and a_2 :

$$\sum_{f \in \mathcal{F}} P(d_m^y \mid f, m, a_1) = \sum_{f \in \mathcal{F}} P(d_m^y \mid f, m, a_2).$$

The NFL theorem: corollaries

Corollary

[1] Assume the uniform distribution of functions over \mathcal{F} , $P(f) = 1/|\mathcal{F}| = |\mathcal{T}|^{-|\mathcal{X}|}$. Then for any value sequence $d_m^{\mathcal{Y}} \in \mathcal{T}^m$ and any two algorithms a_1 and a_2 :

$$P(d_m^{\mathcal{Y}} \mid m, a_1) = P(d_m^{\mathcal{Y}} \mid m, a_2).$$

Corollary

[2] Assume the uniform distribution of functions over \mathcal{F} . Then the expected value of any performance measure Φ over value samples of size *m*,

$$E(\Phi(d_m^y) \mid m, a) = \sum_{d_m^y \in \mathcal{Y}} \Phi(d_m^y) P(d_m^y \mid m, a),$$

is independent of the algorithm a used.

▲□> ▲圖> ▲≣> ▲≣> ▲■> ▲□>

I.N. & P.O. Spring 2006