Lecture 8: Linear and integer programming modelling and tools

- Normal and standard forms
- Modelling
- Tools

Example. Linear program

 $\min x_2 \text{ s.t.}$

x 1			\geq 2
3 <i>x</i> 1	_	<i>x</i> ₂	\geq 0
<i>x</i> ₁	+	<i>x</i> ₂	\geq 6
$-x_{1}$	+	2 <i>x</i> ₂	\geq 0

- Optimal solution is (4,2) of cost 2.
- If we were maximizing, the linear program would be unbounded.
- If we reversed some of the inequalities, the resulting LP min x₂ s.t.

 $egin{array}{ccccc} x_1 & \leq 2 \ 3x_1 & - & x_2 & \geq 0 \ x_1 & + & x_2 & \geq 6 \ -x_1 & + & 2x_2 & \leq 0 \ \end{array}$ would be infeasible.

▲□▶▲舂▶▲≧▶▲≧▶ ≧ りへぐ

I.N. & P.O. Spring 2006

I.IN.	α P.U.	Spring 2000	

-79.4201 Search Problems and Algorithms

General Linear Programs

A general linear program

min cxs.t. Ax = b $l \le x \le u$

where the "=" could be also \leq or \geq and min could also be max

- can be transform to equivalent simpler forms, for instance, a canonical or standard form (introduced below).
- Two forms are equivalent if they have the same set of optimal solutions or are both infeasible or both unbounded.

T-79.4201 Search Problems and Algorithms

Standard and Canonical forms

- Canonical form min cx
 - s.t. $Ax \ge b$

 $x \ge 0$

Standard form min cx

s.t. Ax = b

- $x \ge 0$
- Transformations to these forms
 - From maximization to minimization: $\max cx \Leftrightarrow \min -cx$
 - From equality to inequality: $ax = b \Leftrightarrow \begin{cases} ax \ge b \\ -ax \ge -b \end{cases}$
 - From inequality to equality: $ax \le b \Leftrightarrow ax + s = b, s \ge 0$
 - From non-positivity to non-negativity: to express x_j ≤ 0, replace x_j everywhere with −y_j and impose y_j ≥ 0.
 - From unrestricted variable to non-negative: if x_j is unrestricted in sign, replace it everywhere with x_j⁺ − x_j⁻ and impose x_i⁺ ≥ 0, x_i⁻ ≥ 0.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Modelling

The diet problem:

Given

a_{i,j}: amount of the *i*th nutrient in a unit of the *j*th food *r_i*: yearly requirement of the *i*th nutrient

- c_i : cost per unit of the *j*th food
- Build a yearly diet such that it satisfies the minimal nutritional requirements and is as inexpensive as possible.
- LP solution: take variables x_j to represent yearly consumption of the jth food

```
\min c_1 x_1 + \cdots + c_n x_n \text{ s.t.}
a_{1,1} x_1 + \cdots + a_{1,n} x_n \ge r_1
\vdots
a_{m,1} x_1 + \cdots + a_{m,n} x_n \ge r_m
x_1 \ge 0, \dots, x_n \ge 0
```

I.N. & P.O. Spring 2006

-79.4201 Search Problems and Algorithms

Warehouse Location Problem

- There is a set of *n* customers who need to be assigned to one of the *m* potential warehouse locations.
- Customers can only be assigned to an open warehouse, with there being a cost of c_i for opening warehouse j.
- Once open, a warehouse can serve as many customers as it chooses (with different costs d_{i,j} for each customer-warehouse pair).
- Choose a set of warehouse locations that minimizes the overall costs of serving all the n customers.
- IP solution: introduce binary variables
 - x_j representing the decision to open warehouse j
 - $y_{i,j}$ representing the decision to assign customer *i* to warehouse *j*

Knapsack

- Given: a knapsack of a fixed volume v and n objects, each with a volume a_i and a value b_i.
- Find a collection of these objects with maximal total value that fits in the knapsack.
- IP solution: take variables x_i to model whether item i is included (x_i = 1) or not (x_i = 0)

 $\max b_1 x_1 + \cdots + b_n x_n \text{ s.t.}$ $a_1 x_1 + \cdots + a_n x_n \le v$ $0 \le x_1 \le 1, \dots, 0 \le x_n \le 1$ $x_j \text{ is integer for all } j \in \{1, \dots, n\}$

・ロト・日本・日本・日本・日本・日本

I.N. & P.O. Spring 2006

-79.4201 Search Problems and Algorithms

Warehouse Location Problem—cont'd

Objective function to minimize:

$$\sum_{j} c_{j} x_{j} + \sum_{i} \sum_{j} d_{i,j} y_{i,j}$$

Customers are assigned to exactly one warehouse:

$$\sum_{j} y_{i,j} = 1 \quad \text{for all } i = 1, \dots, n$$

- Customers can be assigned only to an open warehouse. Two approaches:
 - If a warehouse is open, it can serve all n customers:

$$\sum_{j} y_{i,j} \le n x_j \quad \text{for all } j = 1, \dots, m$$

▶ If a customer *i* is assigned to warehouse *j*, it must be open:

```
y_{i,j} \le x_j for all j = 1, \dots, m and i = 1, \dots, n
```

・ロト・4回ト・ミト・ミト・ヨージへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の��

I.N. & P.O. Spring 2006

Resource Constraints

- In a scheduling application typically following types of variables are used:
 - s_j : starting time for job j
 - x_{ij} : binary variable representing whether job *i* occurs before job *j*
- Consider now the constraint:

"If job 2 occurs after job 1, then it starts at least 10 time units after the end of job 1"

This can be represented by introducing a suitably large constant M (d₁ is the duration of job 1):

$$s_2 \ge s_1 + d_1 + 10 - M(1 - x_{12})$$

- If $x_{12} = 1$: we get $s_2 \ge s_1 + d_1 + 10$ as required.
- ► If $x_{12} = 0$: we get $s_2 \ge s_1 + d_1 + 10 M$, which implies no restriction on s_2 if *M* is sufficiently large.

.N. & P.O. Spring 2006

-79.4201 Search Problems and Algorithms

Routing Constraints

- Consider the Hamiltonian cycle problem: INSTANCE: A graph (V, E).
 QUESTION: Is there a simple cycle visiting all nodes of the graph?
- ► Introduce a binary variable x_{i,j} for each edge (i, j) ∈ E indicating whether the edge is included in the cycle (x_{i,j} = 1) or not (x_{i,j} = 0).
- Constraints:
 - The cycle leaves each node *i* through exactly one edge:

$$\sum_{j} x_{i,j} = 1$$

The cycle enters each node i through exactly one edge:

$$\sum_{i} x_{j,i} =$$

1

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めへの

Resource Constraints—cont'd

- To enforce that the values of variables x_{ij} are assigned consistently according to their intuitive meaning further constraints need to be added.
- Either i occurs before j or the reverse but not both:

$$\mathbf{x}_{ij} + \mathbf{x}_{ji} = 1 \quad (i \neq j)$$

▶ If *i* occurs before *j* and *j* before *k*, then *i* occurs before *k*.

$$\mathbf{x}_{ij} + \mathbf{x}_{jk} - \mathbf{x}_{ik} \leq 1$$

A potential problem: $O(n^3)$ constraints are needed where *n* is the number of jobs.

- * ロ * * 母 * * 目 * * 目 * * のへで

I.N. & P.O. Spring 2006

-79.4201 Search Problems and Algorithms

Hamiltonian Cycle

- However, the constraints above are not sufficient.
- Consider, for example, a graph with 6 nodes such that variables x_{1,2}, x_{2,3}, x_{3,1}, x_{4,5}, x_{5,6}, x_{6,4} are set to 1 and all others to 0.
 This solution satisfies the constraints but does not represent a Hamiltonian cycle (two separate cycles).
- Enforcing a single cycle is non-trivial.
- A solution for small graphs is to require that the cycle leaves every proper subset of the nodes, that is, to have a constraint

$$\sum_{\in E, i \in s, j \notin s} x_{i,j} \ge 1$$

for every proper subset *s* of the nodes *V*.

(i,j)

- In the example above, this constraint would be violated for s = {1,2,3}.
- ► A potential problem for bigger graphs: O(2ⁿ) constraints needed where n is the number of nodes.

Hamiltonian Cycle-cont'd

- Another approach, where the number of constraints remains polynomial, is to introduce an integer variable p_i for each node i = 1,..., n in the graph to represent the position of the node i in the cycle, that is, p_i = k means that node i is kth node visited in the cycle.
- In order to enforce a single cycle we need to enforce the following conditions.
- Each p_i has a value in $\{1, \ldots, n\}$:

 $1 \le p_i \le n$

- ▶ This value is unique, that is, for all pairs of nodes *i* and *j* with $i \neq j$, $p_j \neq p_i$ holds.
- For all pairs of nodes *i* and *j* with *i* ≠ *j* such that (*i*, *j*) ∉ *E*, node *j* cannot be the next node after *i*, that is,
 - $p_j \neq p_i + 1$ holds and
 - if $p_i = n$, then $p_j \neq 1$.

I.N. & P.O. Spring 2006

-79.4201 Search Problems and Algorithms

Expressing Disequality

- In order to obtain a MIP we need to be able to express disequality (≠) constraints.
- ▶ Because for every p_i , $1 \le p_i \le n$ holds, condition "if $p_i = n$, then $p_i \ne 1$ " can be expressed as

 $1-(n-p_i) \le p_j-1$

► For expressing an arbitrary disequality x ≠ y, we introduce a binary integer variable b and a large constant M and the constraints

$$x - y + Mb \ge 1$$
$$x - y + Mb \le M - 1$$

Notice that

- ► if b = 0, then we get $x y \ge 1$, $x y \le M 1$ which can be satisfied only if x > y and
- ► if b = 1, then we get $x y + M \ge 1$, $x y \le -1$ which can be satisfied only if x < y.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めへぐ

.N. & P.O. Spring 2006

-79.4201 Search Problems and Algorithms

MIP Tools

- There are several efficient commercial MIP solvers.
- Also public domain systems exists but these are not as efficient as the commercial ones.

▶ See, for example,

http://www-unix.mcs.anl.gov/otc/Guide/faq/ linear-programming-fag.html

for MIP systems and other information and frequently asked questions.

MIP Solvers

- A MIP solver can typically take its input via an input file and an API.
- There a number of wide used input formats (like mps) and tool specific formats (lp_solve, CPLEX, LINDO, GNU MathProg, LPFML XML, ...)
- MIP solvers do not require the input program to be in a standard form but typically quite general MIPs are allowed, that is
 - both minimization and maximization are supported and
 - operators "=", " \leq ", and " \geq " can all be used.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

T-79.4201 Search Problems and Algorithms

lp_solve

- In the third home assignment a public domain MIP solver, lp_solve is employed.
- See the newest version (5.5) at http://lpsolve.sourceforge.net/5.5/
- lp_solve accepts a number of input formats Example. lp solve native format

min: x1 + x2 + 3x3; x1 - x2 <= 1; 2x2 - 2.5x3 >= 1; -7x3 + x2 = 3; > lp_solve < example Value of objective function: 3 x1 0 x2 3 x3 0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Instructions for home assignment round three

- The goal is to solve two optimization problems by encoding them as MIP problems which are then solved lp_solve.
- The task is to write a (Java) program that takes as input an instance of the problem, generates a MIP encoding, runs lp_solve on the encoding, and transforms the output of lp_solve to the required format.
- Further information can be found on the home page of the course (the problems, general instructions, lp_solve binaries, format for MIP programs, Java libraries to translate the format to lp_solve native format, results back to the required format, reading input, ...).

・ロト・日本・モン・モン・モージック

I.N. & P.O. Spring 2006

I.N. & P.O. Spring 2006