
T–79.4201 Search Problems and Algorithms

Lecture 8: Linear and integer programming
modelling and tools

I Normal and standard forms

I Modelling

I Tools

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Example. Linear program

I minx2 s.t.
x1 ≥ 2

3x1 − x2 ≥ 0
x1 + x2 ≥ 6

−x1 + 2x2 ≥ 0

I Optimal solution is (4,2) of cost 2.

I If we were maximizing, the linear program would be unbounded.

I If we reversed some of the inequalities, the resulting LP
minx2 s.t.

x1 ≤ 2
3x1 − x2 ≥ 0
x1 + x2 ≥ 6

−x1 + 2x2 ≤ 0
would be infeasible.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

General Linear Programs

I A general linear program

mincx

s.t. Ax = b

l ≤ x ≤ u

where the “=” could be also ≤ or ≥ and min could also be max

I can be transform to equivalent simpler forms, for instance, a
canonical or standard form (introduced below).

I Two forms are equivalent if they have the same set of optimal
solutions or are both infeasible or both unbounded.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Standard and Canonical forms

I Canonical form mincx
s.t. Ax ≥ b

x ≥ 0

I Standard form mincx
s.t. Ax = b

x ≥ 0
I Transformations to these forms

I From maximization to minimization: maxcx ⇔ min−cx

I From equality to inequality: ax = b ⇔

{

ax ≥ b
−ax ≥−b

I From inequality to equality: ax ≤ b ⇔ ax + s = b,s ≥ 0
I From non-positivity to non-negativity: to express xj ≤ 0, replace xj

everywhere with −yj and impose yj ≥ 0.
I From unrestricted variable to non-negative: if xj is unrestricted in

sign, replace it everywhere with x+
j − x−

j and impose

x+
j ≥ 0,x−

j ≥ 0.

I.N. & P.O. Spring 2006



T–79.4201 Search Problems and Algorithms

Modelling
The diet problem:

I Given
ai,j : amount of the i th nutrient in a unit of the j th food
ri : yearly requirement of the i th nutrient
cj : cost per unit of the j th food

I Build a yearly diet such that it satisfies the minimal nutritional
requirements and is as inexpensive as possible.

I LP solution: take variables xj to represent yearly consumption of
the j th food

minc1x1 + · · ·cnxn s.t.
a1,1x1 + · · ·+a1,nxn ≥ r1
...
am,1x1 + · · ·+am,nxn ≥ rm

x1 ≥ 0, . . . ,xn ≥ 0

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Knapsack

I Given: a knapsack of a fixed volume v and n objects, each with a
volume ai and a value bi .

I Find a collection of these objects with maximal total value that fits
in the knapsack.

I IP solution: take variables xi to model whether item i is included
(xi = 1) or not (xi = 0)

maxb1x1 + · · ·bnxn s.t.
a1x1 + · · ·+anxn ≤ v
0 ≤ x1 ≤ 1, . . . ,0 ≤ xn ≤ 1
xj is integer for all j ∈ {1, . . . ,n}

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Warehouse Location Problem

I There is a set of n customers who need to be assigned to one of
the m potential warehouse locations.

I Customers can only be assigned to an open warehouse, with
there being a cost of cj for opening warehouse j .

I Once open, a warehouse can serve as many customers as it
chooses (with different costs di,j for each customer-warehouse
pair).

I Choose a set of warehouse locations that minimizes the overall
costs of serving all the n customers.

I IP solution: introduce binary variables
xj representing the decision to open warehouse j
yi,j representing the decision to assign customer i to warehouse j

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Warehouse Location Problem—cont’d

I Objective function to minimize:

∑
j

cjxj +∑
i

∑
j

di,jyi,j

I Customers are assigned to exactly one warehouse:

∑
j

yi,j = 1 for all i = 1, . . . ,n

I Customers can be assigned only to an open warehouse.
Two approaches:

I If a warehouse is open, it can serve all n customers:

∑
i

yi,j ≤ nxj for all j = 1, . . . ,m

I If a customer i is assigned to warehouse j , it must be open:

yi,j ≤ xj for all j = 1, . . . ,m and i = 1, . . . ,n

I.N. & P.O. Spring 2006



T–79.4201 Search Problems and Algorithms

Resource Constraints

I In a scheduling application typically following types of variables
are used:
sj : starting time for job j
xij : binary variable representing whether job i occurs before job j

I Consider now the constraint:
“If job 2 occurs after job 1, then it starts at least 10 time units after
the end of job 1”

I This can be represented by introducing a suitably large constant
M (d1 is the duration of job 1):

s2 ≥ s1 +d1 +10−M(1− x12)

I If x12 = 1: we get s2 ≥ s1 +d1 +10 as required.
I If x12 = 0: we get s2 ≥ s1 +d1 +10−M, which implies no

restriction on s2 if M is sufficiently large.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Resource Constraints—cont’d

I To enforce that the values of variables xij are assigned
consistently according to their intuitive meaning further
constraints need to be added.

I Either i occurs before j or the reverse but not both:

xij + xji = 1 (i 6= j)

I If i occurs before j and j before k , then i occurs before k .

xij + xjk − xik ≤ 1

A potential problem: O(n3) constraints are needed where n is the
number of jobs.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Routing Constraints

I Consider the Hamiltonian cycle problem:
INSTANCE: A graph (V ,E).
QUESTION: Is there a simple cycle visiting all nodes of the
graph?

I Introduce a binary variable xi,j for each edge (i, j) ∈ E indicating
whether the edge is included in the cycle (xi,j = 1) or not (xi,j = 0).

I Constraints:
I The cycle leaves each node i through exactly one edge:

∑
j

xi,j = 1

I The cycle enters each node i through exactly one edge:

∑
j

xj,i = 1

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Hamiltonian Cycle
I However, the constraints above are not sufficient.
I Consider, for example, a graph with 6 nodes such that variables

x1,2,x2,3,x3,1,x4,5,x5,6,x6,4 are set to 1 and all others to 0.
This solution satisfies the constraints but does not represent a
Hamiltonian cycle (two separate cycles).

I Enforcing a single cycle is non-trivial.
I A solution for small graphs is to require that the cycle leaves

every proper subset of the nodes, that is, to have a constraint

∑
(i,j)∈E ,i∈s,j 6∈s

xi,j ≥ 1

for every proper subset s of the nodes V .
I In the example above, this constraint would be violated for

s = {1,2,3}.
I A potential problem for bigger graphs: O(2n) constraints needed

where n is the number of nodes.

I.N. & P.O. Spring 2006



T–79.4201 Search Problems and Algorithms

Hamiltonian Cycle–cont’d
I Another approach, where the number of constraints remains

polynomial, is to introduce an integer variable pi for each node
i = 1, . . . ,n in the graph to represent the position of the node i in
the cycle, that is, pi = k means that node i is k th node visited in
the cycle.

I In order to enforce a single cycle we need to enforce the following
conditions.

I Each pi has a value in {1, . . . ,n}:

1 ≤ pi ≤ n

I This value is unique, that is, for all pairs of nodes i and j with
i 6= j , pj 6= pi holds.

I For all pairs of nodes i and j with i 6= j such that (i, j) 6∈ E , node j
cannot be the next node after i , that is,

I pj 6= pi +1 holds and
I if pi = n, then pj 6= 1.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Expressing Disequality

I In order to obtain a MIP we need to be able to express disequality
(6=) constraints.

I Because for every pi , 1 ≤ pi ≤ n holds, condition “if pi = n, then
pj 6= 1” can be expressed as

1− (n−pi) ≤ pj −1

I For expressing an arbitrary disequality x 6= y , we introduce a
binary integer variable b and a large constant M and the
constraints

x − y +Mb ≥ 1
x − y +Mb ≤ M −1

Notice that
I if b = 0, then we get x − y ≥ 1,x − y ≤ M −1 which can be

satisfied only if x > y and
I if b = 1, then we get x − y +M ≥ 1,x − y ≤−1 which can be

satisfied only if x < y .

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

MIP Tools

I There are several efficient commercial MIP solvers.

I Also public domain systems exists but these are not as efficient
as the commercial ones.

I See, for example,
http://www-unix.mcs.anl.gov/otc/Guide/faq/
linear-programming-faq.html
for MIP systems and other information and frequently asked
questions.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

MIP Solvers

I A MIP solver can typically take its input via an input file and an
API.

I There a number of wide used input formats (like mps) and tool
specific formats (lp_solve, CPLEX, LINDO, GNU MathProg,
LPFML XML, . . . )

I MIP solvers do not require the input program to be in a standard
form but typically quite general MIPs are allowed, that is

I both minimization and maximization are supported and
I operators “=”, “≤”, and “≥” can all be used.

I.N. & P.O. Spring 2006

http://www-unix.mcs.anl.gov/otc/Guide/faq/
linear-programming-faq.html


T–79.4201 Search Problems and Algorithms

lp_solve

I In the third home assignment a public domain MIP solver,
lp_solve is employed.

I See the newest version (5.5) at
http://lpsolve.sourceforge.net/5.5/

I lp_solve accepts a number of input formats
Example. lp_solve native format
min: x1 + x2 + 3x3;

x1 - x2 <= 1;
2x2 - 2.5x3 >= 1;
-7x3 + x2 = 3;

> lp_solve < example
Value of objective function: 3
x1 0
x2 3
x3 0

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Instructions for home assignment round three

I The goal is to solve two optimization problems by encoding them
as MIP problems which are then solved lp_solve.

I The task is to write a (Java) program that takes as input an
instance of the problem, generates a MIP encoding, runs
lp_solve on the encoding, and transforms the output of
lp_solve to the required format.

I Further information can be found on the home page of the course
(the problems, general instructions, lp_solve binaries, format for
MIP programs, Java libraries to translate the format to lp_solve
native format, results back to the required format, reading input,
. . . ).

I.N. & P.O. Spring 2006

http://lpsolve.sourceforge.net/5.5/

