Example. Linear program

- $\min x_{2}$ s.t.

x_{1}	
$3 x_{1}-x_{2}$	≥ 0
$x_{1}+x_{2}$	≥ 6
$-x_{1}+2 x_{2}$	≥ 0

- Optimal solution is $(4,2)$ of cost 2 .
- If we were maximizing, the linear program would be unbounded.
- If we reversed some of the inequalities, the resulting LP $\min x_{2}$ s.t.

x_{1}		≤ 2
$3 x_{1}$	$-x_{2}$	≥ 0
x_{1}	$+x_{2}$	≥ 6
$-x_{1}$	$+2 x_{2}$	≤ 0

would be infeasible.

T-79.4201 Search Problems and Algorithms

General Linear Programs

- A general linear program

$$
\begin{array}{ll}
& \min c x \\
\text { s.t. } & A x=b \\
& I \leq x \leq u
\end{array}
$$

where the " $=$ " could be also \leq or \geq and min could also be max

- can be transform to equivalent simpler forms, for instance, a canonical or standard form (introduced below).
- Two forms are equivalent if they have the same set of optimal solutions or are both infeasible or both unbounded.

-79.4201 Search Problems and Algorithms

Standard and Canonical forms

- Canonical form mincx s.t. $A x \geq b$ $x \geq 0$
- Standard form
$\min c x$
s.t. $A x=b$
$x \geq 0$
- Transformations to these forms
- From maximization to minimization: $\max c x \Leftrightarrow \min -c x$
- From equality to inequality: $a x=b \Leftrightarrow\left\{\begin{array}{l}a x \geq b \\ -a x \geq-b\end{array}\right.$
- From inequality to equality: $a x \leq b \Leftrightarrow a x+s=b, s \geq 0$
- From non-positivity to non-negativity: to express $x_{j} \leq 0$, replace x_{j} everywhere with $-y_{j}$ and impose $y_{j} \geq 0$.
- From unrestricted variable to non-negative: if x_{j} is unrestricted in sign, replace it everywhere with $x_{j}^{+}-x_{j}^{-}$and impose $x_{j}^{+} \geq 0, x_{j}^{-} \geq 0$.

Modelling

The diet problem:

- Given
$a_{i, j}$: amount of the j th nutrient in a unit of the j th food
r_{i} : yearly requirement of the i th nutrient
c_{j} : cost per unit of the j th food
- Build a yearly diet such that it satisfies the minimal nutritional requirements and is as inexpensive as possible.
- LP solution: take variables x_{j} to represent yearly consumption of the jth food

$$
\begin{aligned}
& \min c_{1} x_{1}+\cdots c_{n} x_{n} \text { s.t. } \\
& a_{1,1} x_{1}+\cdots+a_{1, n} x_{n} \geq r_{1} \\
& \vdots \\
& a_{m, 1} x_{1}+\cdots+a_{m, n} x_{n} \geq r_{m} \\
& x_{1} \geq 0, \ldots, x_{n} \geq 0
\end{aligned}
$$

Knapsack

- Given: a knapsack of a fixed volume v and n objects, each with a volume a_{i} and a value b_{i}.
- Find a collection of these objects with maximal total value that fits in the knapsack.
- IP solution: take variables x_{i} to model whether item i is included $\left(x_{i}=1\right)$ or not $\left(x_{i}=0\right)$

$$
\begin{aligned}
& \max b_{1} x_{1}+\cdots b_{n} x_{n} \text { s.t. } \\
& a_{1} x_{1}+\cdots+a_{n} x_{n} \leq v \\
& 0 \leq x_{1} \leq 1, \ldots, 0 \leq x_{n} \leq 1 \\
& x_{j} \text { is integer for all } j \in\{1, \ldots, n\}
\end{aligned}
$$

Warehouse Location Problem

- There is a set of n customers who need to be assigned to one of the m potential warehouse locations.
- Customers can only be assigned to an open warehouse, with there being a cost of c_{j} for opening warehouse j.
- Once open, a warehouse can serve as many customers as it chooses (with different costs $d_{i, j}$ for each customer-warehouse pair).
- Choose a set of warehouse locations that minimizes the overall costs of serving all the n customers.
- IP solution: introduce binary variables x_{j} representing the decision to open warehouse j $y_{i, j}$ representing the decision to assign customer i to warehouse j

Warehouse Location Problem—cont'd

- Objective function to minimize:

$$
\sum_{j} c_{j} x_{j}+\sum_{i} \sum_{j} d_{i, j} y_{i, j}
$$

- Customers are assigned to exactly one warehouse:

$$
\sum_{j} y_{i, j}=1 \quad \text { for all } i=1, \ldots, n
$$

- Customers can be assigned only to an open warehouse. Two approaches:
- If a warehouse is open, it can serve all n customers:

$$
\sum_{i} y_{i, j} \leq n x_{j} \quad \text { for all } j=1, \ldots, m
$$

- If a customer i is assigned to warehouse j, it must be open:

$$
y_{i, j} \leq x_{j} \quad \text { for all } j=1, \ldots, m \text { and } i=1, \ldots, n
$$

Resource Constraints

- In a scheduling application typically following types of variables are used:
s_{j} : starting time for job j
$x_{i j}$: binary variable representing whether job i occurs before job j
- Consider now the constraint:
"If job 2 occurs after job 1, then it starts at least 10 time units after the end of job 1"
- This can be represented by introducing a suitably large constant M (d_{1} is the duration of job 1):

$$
s_{2} \geq s_{1}+d_{1}+10-M\left(1-x_{12}\right)
$$

- If $x_{12}=1$: we get $s_{2} \geq s_{1}+d_{1}+10$ as required.
- If $x_{12}=0$: we get $s_{2} \geq s_{1}+d_{1}+10-M$, which implies no restriction on s_{2} if M is sufficiently large.

Resource Constraints-cont'd

- To enforce that the values of variables $x_{i j}$ are assigned consistently according to their intuitive meaning further constraints need to be added.
- Either i occurs before j or the reverse but not both:

$$
x_{i j}+x_{j i}=1 \quad(i \neq j)
$$

- If i occurs before j and j before k, then i occurs before k.

$$
x_{i j}+x_{j k}-x_{i k} \leq 1
$$

A potential problem: $\mathrm{O}\left(n^{3}\right)$ constraints are needed where n is the number of jobs.

Hamiltonian Cycle

- However, the constraints above are not sufficient.
- Consider, for example, a graph with 6 nodes such that variables $x_{1,2}, x_{2,3}, x_{3,1}, x_{4,5}, x_{5,6}, x_{6,4}$ are set to 1 and all others to 0
This solution satisfies the constraints but does not represent a Hamiltonian cycle (two separate cycles).
- Enforcing a single cycle is non-trivial.
- A solution for small graphs is to require that the cycle leaves every proper subset of the nodes, that is, to have a constraint

$$
\sum_{(i, j) \in E, i \in s, j \notin s} x_{i, j} \geq 1
$$

for every proper subset s of the nodes V.

- In the example above, this constraint would be violated for $s=\{1,2,3\}$.
- A potential problem for bigger graphs: $\mathrm{O}\left(2^{n}\right)$ constraints needed where n is the number of nodes.

Hamiltonian Cycle-cont'd

- Another approach, where the number of constraints remains polynomial, is to introduce an integer variable p_{i} for each node $i=1, \ldots, n$ in the graph to represent the position of the node i in the cycle, that is, $p_{i}=k$ means that node i is k th node visited in the cycle.
- In order to enforce a single cycle we need to enforce the following conditions.
- Each p_{i} has a value in $\{1, \ldots, n\}$:

$$
1 \leq p_{i} \leq n
$$

- This value is unique, that is, for all pairs of nodes i and j with $i \neq j, p_{j} \neq p_{i}$ holds.
- For all pairs of nodes i and j with $i \neq j$ such that $(i, j) \notin E$, node j cannot be the next node after i, that is,
- $p_{j} \neq p_{i}+1$ holds and
- if $p_{i}=n$, then $p_{j} \neq 1$.

Expressing Disequality

- In order to obtain a MIP we need to be able to express disequality (\neq) constraints.
- Because for every $p_{i}, 1 \leq p_{i} \leq n$ holds, condition "if $p_{i}=n$, then $p_{j} \neq 1$ " can be expressed as

$$
1-\left(n-p_{i}\right) \leq p_{j}-1
$$

- For expressing an arbitrary disequality $x \neq y$, we introduce a binary integer variable b and a large constant M and the constraints

$$
\begin{aligned}
& x-y+M b \geq 1 \\
& x-y+M b \leq M-1
\end{aligned}
$$

Notice that

- if $b=0$, then we get $x-y \geq 1, x-y \leq M-1$ which can be satisfied only if $x>y$ and
- if $b=1$, then we get $x-y+M \geq 1, x-y \leq-1$ which can be satisfied only if $x<y$.

MIP Solvers

- A MIP solver can typically take its input via an input file and an API.
- There a number of wide used input formats (like mps) and tool specific formats (lp_solve, CPLEX, LINDO, GNU MathProg, LPFML XML, ...)
- MIP solvers do not require the input program to be in a standard form but typically quite general MIPs are allowed, that is
- both minimization and maximization are supported and
- operators " $=$ ", " \leq ", and " \geq " can all be used.

lp_solve

- In the third home assignment a public domain MIP solver,
lp_solve is employed.
- See the newest version (5.5) at
http://lpsolve.sourceforge.net/5.5/
- lp_solve accepts a number of input formats

Example. lp_solve native format

```
min: x1 + x2 + 3x3;
x1 - x2 <= 1;
2x2 - 2.5x3 >= 1;
    -7x3 + x2 = 3;
> lp_solve < example
Value of objective function:
x 1 0
\(x 2 \quad 3\)
x3
```

```
x3
0
```

0

```

\section*{Instructions for home assignment round three}
- The goal is to solve two optimization problems by encoding them as MIP problems which are then solved lp_solve.
- The task is to write a (Java) program that takes as input an instance of the problem, generates a MIP encoding, runs lp_solve on the encoding, and transforms the output of lp_solve to the required format.
- Further information can be found on the home page of the course (the problems, general instructions, lp_solve binaries, format for MIP programs, Java libraries to translate the format to lp_solve native format, results back to the required format, reading input,
...).```

