
T–79.4201 Search Problems and Algorithms

Lecture 7: Constraint satisfaction
Linear and integer programming

I Constraint satisfaction
I Global constraints
I Local search
I Tools for SAT and CSP

I Linear and integer programming
I Introduction

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Global Constraints

I Constraint programming systems often offer constraints with
special purpose constraint propagation (filtering) algorithms.
Such a constraint can typically be seen as an encapsulation of a
set of simpler constraints and is called a global constraint.

I A representative example is the alldiff constraint:

alldiff(x1, . . . ,xn) = {(d1, . . . ,dn) | di 6= dj , for i 6= j}

Example. A tuple (a,b,c) satisfies alldiff(x1,x2,x3) but (a,b,a)
does not.

I alldiff(x1, . . . ,xn) can be seen as an encapsulation of a set of
binary constraints xi 6= xj , 1 ≤ i < j ≤ n.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Global Constraints: alldiff

I Global constraints enable compact encodings of problems.

I Example. N Queens
Problem: Place n queens on a n×n chess board so that they do
not attack each other.

I Variables: x1, . . . ,xn (xi gives the position of the queen on ith
column)

I Domains: [1..n]
I Constraints: for i ∈ [1..n−1] and j ∈ [i +1..n]:

(i) alldiff(x1, . . . ,xn) (rows)
(ii) xi − xj 6= i − j (SW-NE diagonals)
(iii) xi − xj 6= j − i (NW-SE diagonals)

I In addition to compactness global constraints often provide more
powerful propagation than the same condition expressed as the
set of corresponding simpler constraints.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Global Constraints: Propagation

I Consider the case of alldiff:
For alldiff(x1, . . . ,xn) there is an efficient hyper-arc consistency
algorithm which allows more powerful propagation than hyper-arc
consistency for the set of corresponding “6=” constraints.

I Example.
I Consider variables x1,x2,x3 with domains

D1 = {a,b,c},D2 = {a,b},D3 = {a,b}.
I Now alldiff(x1,x2,x3) is not hyper-arc consistent and the

projection rule removes values a,b from the domain of x1.
I However, the corresponding set of constraints

x1 6= x2,x1 6= x3,x2 6= x3 is hyper-arc consistent and the projection
rule is not able to remove any values.

I.N. & P.O. Spring 2006



T–79.4201 Search Problems and Algorithms

Global Constraints: Other Examples

I When solving a CSP problem often a special purpose (global)
constraint and an efficient propagation algorithm for it needs to be
developed to make the solution technique more efficient.

I There is a wide range of such global constraints:
I cumulative
I diff-n
I cycle
I sort
I alldifferent and permutation
I symmetric alldifferent
I global cardinality (with cost)
I sequence
I stretch
I minimum global distance
I k-diff
I number of distinct values

. . .

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

CSP: Local Search

I GSAT and WalkSAT type of local search algorithms (see
Lecture 4) can be generalized to CSPs.

I As an example we consider Min Conflict Heuristic (MCH)
algorithm (Minton et al, 1990):
Given a CSP instance P

I Initialize each variable by selecting a value uniformly at random
from its domain.

I In each local step select a variable xi uniformly at random from
from the conflict set, which is the set of variables appearing in a
constraint that is unsatisfied under the current assignment.

I A new value v for xi is selected from the domain of xi such that by
assigning v to xi the number of conflicting constraints is
minimized.

I If there is more than one value with that property, one of the
minimizing values is chosen uniformly at random.

I One can add also a random walk step like in NoisyGSAT (WMCH
algorithm; Wallace and Freuder, 1995).

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

CSP: Local Search

I A tabu search algorithm by Galiner and Hao is one of the best
performing general local search algorithms for CSPs.

I TS-GH algorithm (Galiner and Hao, 1997):
I Initialize each variable by selecting a value uniformly at random

from its domain.
I In each local step select among all variable-value pairs (x ′,v ′)

such that x ′ appears in a constraint that is unsatisfied under the
current assignment and v ′ is in the domain of v ′, a pair (x ,v) that
leads to a maximal decrease in the number of violated constraints.

I If there multiple such pairs, one of them is chosen uniformly at
random.

I After changing the assignment of x to v , the pair (x ,v) is declared
tabu for tt steps.

I For competitive performance, the evaluation function for
variable-value pairs needs to be implemented using caching and
incremental updating techniques.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

SAT: Local Search

I Local search methods have difficulties with structured problem
instances.

I For good performance parameter tuning is essential.
(For example in WalkSAT: the noise parameter p and the
max_flips parameter.)

I Finding good parameter values is a non-trivial problem which
typically requires substantial experimentation and experience.

I WalkSAT revised: adding greediness and adaptivity
=⇒ Novelty+ and AdaptiveNovelty+ algorithms

I.N. & P.O. Spring 2006



T–79.4201 Search Problems and Algorithms

WalkSAT

function WalkSAT(F ,p):
t ← initial truth assignment;
while flips < max_flips do

if t satisfies F then return t else
choose a random unsatisfied clause C in F ;
if some variables in C can be flipped without

breaking any presently satisfied clauses,
then pick one such variable x at random; else:

with probability p, pick a variable x in C unif. at random;
with probability (1−p), do basic GSAT move:

find a variable x in C whose flipping causes
largest decrease in c(t);

t ← (t with variable x flipped)
end while;
return t .

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Novelty+
I WalkSAT can be made greedier using a history-based variable

selection mechanism.
I The age of a variable is the number of local search steps since

the variable was last flipped.
I Novelty algorithm (McAllester et al., 1997):

After choosing an unsatisfiable clause the variable to be flipped is
selected as follows:

I If the variable with the highest score does not have minimal age
among the variables within the same clause, it is always selected.

I Else it is only selected with probability 1−p, where p is a
parameter called noise setting.

I Otherwise the variable with the next lower score is selected.
I When sorting variables according to their scores, ties are broken

according to decreasing age.
I In Novelty+ (Hoos 1998) a random walk step is added:

with probability 1−wp the variable to be flipped is selected
according to the Novelty mechanism and in the other cases a
random walk step is performed.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Adaptive WalkSat and Adaptive Novelty+
I A suitable value for the noise parameter p is crucial for

competitive performance of WalkSAT and its variants.
I Too low noise settings lead to stagnation behaviour and too high

settings to long running times.
I Instead of a static setting, a dynamically changing noise setting

can be used.
I Adaptive WalkSat and Novelty+ (Hoos, 2002):

Two parameters θ and φ are given.
I At the beginning the search is maximally greedy (p = 0).
I There is a search stagnation if no improvement in the evaluation

function value has been observed over the last mθ search steps
where m is the number of clauses in the instance.

I In this situation the noise value is increased by p := p +(1−p)φ
and if after this the search stagnation continues, p is further
increased in the same way.

I If there is an improvement in the evaluation function value, then
the noise value is decreased by p := p−pφ/2.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Tools for SAT

I The development of SAT solvers is strongly driven by SAT
competitions (http://www.satcompetition.org/)

I There is a wide range of efficient solvers also available in public
domain.

I See for example http://www.satcompetition.org/ for
solvers that ranked well in previous SAT competitions.
SAT2005:

SatELiteGTI, MiniSAT 1.13, zChaff_rand, HaifaSAT,
Vallst, March_dl, kcnf-2004, Dew_Satz1a, Jerusat 1.31 B,
Hsat1, ranov, g2wsat, VW

I.N. & P.O. Spring 2006

http://www.satcompetition.org/
http://www.satcompetition.org/


T–79.4201 Search Problems and Algorithms

Tools for CSP

I Constraint programming systems offer a rich set of supported
constraint types with efficient propagation algorithms and
primitives for implementing search.

I Typically the user needs to program, for example, the search
algorithm, splitting technique, and heuristic.

I See, for example,
http://4c.ucc.ie/~tw/csplib/links.html for available
constraint solvers:

CLAIRE, ECLiPse, GNU Prolog, Oz,
Sicstus Prolog, ILOG Solver, ...

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Linear and Integer Programming

I Linear and Integer Programming can be thought to be a subclass
of constraint programming where there are

I two types of variables: real valued and integer valued
I only one type of constraint: linear (in)equalities.

I Linear Programming (LP): only real valued variables.

I Integer Programming (IP): only integer variables.

I Mixed Integer Programming (MIP): both integer and real valued
variables.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Linear and Integer Programming

I Computationally there is a fundamental difference between LP
and IP:
LP problems can be solved efficiently (in polynomial time) but
IP problems are NP-complete (and all known algorithms have an
exponential worst-case running time).

I MIP offers an attractive framework for solving (search and)
optimization problems:

I Continuous variables can be handled efficiently along with
discrete variables.

I Powerful LP solution techniques can be exploited in the IP case
through linear relaxation.

I Bounds on deviation from optimality can be generated even when
optimal solutions are not proven.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

MIP: Basic Concepts

I Let x be a vector of variables x = (x1, . . . ,xn).

I Each variable in a set I of variables is required to take integer
values while the remaining variables can take any real value.
Each variable can have a range represented by vectors
l = (l1, . . . , ln) and u = (u1, . . . ,un) such that for all i , li ≤ xi ≤ ui ,
that is, l ≤ x ≤ u.

I A linear constraint on the variables is of the form

Σjajxj = b or ax = b

where a is a vector coefficients a = (a1, . . . ,an) and b is a scalar.
The relation symbol ’=’ can also be ’≤’ or ’≥’.

I A linear objective function is represented by a vector of
coefficients c = (c1, . . . ,cn) with the objective of minimizing (or
maximizing) Σjcjxj = cx .

I.N. & P.O. Spring 2006

http://4c.ucc.ie/~tw/csplib/links.html


T–79.4201 Search Problems and Algorithms

MIP: Basic Concepts

I A (mixed) integer program consists of a single linear objective
and a set of constraints.

I If we create a matrix A = (aij) where aij is the coefficient for
variable j in the i th constraint, then a MIP can be written as:

mincx

s.t. Ax = b

l ≤ x ≤ u

xj is integer for all j ∈ I

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

An Example. SET COVER
INSTANCE: A family of sets F = {S1, . . . ,Sn} of subsets of a finite set
U.
QUESTION: Find an l-cover of U (a set of l sets from F whose union
is U) with the smallest number l of sets.

I For each set Si an integer variable xi such that 0 ≤ xi ≤ 1

I For each element u of U a constraint

a1x1 + · · ·+anxn ≥ 1

where the coefficient ai = 1 if u ∈ Si and otherwise ai = 0.

I Objective: minx1 + · · ·+ xn

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

MIP: Basic Concepts

I A feasible solution to a MIP is an assignment of values to the
variables in the problem such that the assignment satisfies all the
linear constraints and range constraints and for each variable in I
it assigns an integer value.

I A program is feasible if it has a feasible solution otherwise it is
said to be infeasible.

I An optimal solution is a feasible solution that gives the minimal
value of the objective function among all feasible solutions.

I A program is unbounded (from below) if for all λ ∈ R there is a
feasible solution for which the value of the objective function is at
most λ.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Modelling: Logical Constraints

I Use binary integer variables (0 ≤ x ≤ 1).

I Disjunction: x3 has the value of the boolean expression x1 ∨ x2:

x3 ≥ x1
x3 ≥ x2
x3 ≤ x1 + x2

I Conjunction: x3 has the value of the boolean expression x1 ∧ x2:

x3 ≤ x1
x3 ≤ x2
x3 ≥ x1 + x2 −1

I.N. & P.O. Spring 2006



T–79.4201 Search Problems and Algorithms

Modelling SAT

I Given a SAT instance F in CNF, introduce

I for each Boolean variable in F , a binary integer variable x
(0 ≤ x ≤ 1).

I for each clause li ∨·· ·∨ ln in F , a constraint

a1x1 + · · ·+anxn ≥ 1−m

where the coefficient ai = 1 if the literal li is positive and otherwise
ai = −1 and m is the number of negative literals in the clause.

I Then F is satisfiable iff the corresponding set of constraints has a
feasible solution.

I.N. & P.O. Spring 2006


