Lecture 7: Constraint satisfaction Linear and integer programming

- Constraint satisfaction
 - Global constraints
 - Local search
 - Tools for SAT and CSP
- Linear and integer programming
 - Introduction

Global Constraints

- Constraint programming systems often offer constraints with special purpose constraint propagation (filtering) algorithms.
 Such a constraint can typically be seen as an encapsulation of a set of simpler constraints and is called a global constraint.
- A representative example is the alldiff constraint:

alldiff $(x_1, \ldots, x_n) = \{(d_1, \ldots, d_n) \mid d_i \neq d_j, \text{for } i \neq j\}$

Example. A tuple (a, b, c) satisfies $alldiff(x_1, x_2, x_3)$ but (a, b, a) does not.

alldiff(x₁,..., x_n) can be seen as an encapsulation of a set of binary constraints x_i ≠ x_i, 1 ≤ i < j ≤ n.</p>

・ロト・日本・モト・モト・モー うへで

I.N. & P.O. Spring 2006

-79.4201 Search Problems and Algorithms

Global Constraints: alldiff

- Global constraints enable compact encodings of problems.
- **Example.** N Queens

Problem: Place *n* queens on a $n \times n$ chess board so that they do not attack each other.

- Variables: x₁,..., x_n (x_i gives the position of the queen on ith column)
- Domains: [1..n]
- ► Constraints: for $i \in [1..n-1]$ and $j \in [i+1..n]$: (i) alldiff $(x_1,...,x_n)$ (rows) (ii) $x_i - x_j \neq i - j$ (SW-NE diagonals) (iii) $x_i - x_i \neq j - i$ (NW-SE diagonals)
- In addition to compactness global constraints often provide more powerful propagation than the same condition expressed as the set of corresponding simpler constraints.

-79.4201 Search Problems and Algorithms

.N. & P.O. Spring 2006

Global Constraints: Propagation

Consider the case of alldiff:

For all diff($x_1, ..., x_n$) there is an efficient hyper-arc consistency algorithm which allows more powerful propagation than hyper-arc consistency for the set of corresponding " \neq " constraints.

- **Example.**
 - Consider variables x₁, x₂, x₃ with domains D₁ = {a, b, c}, D₂ = {a, b}, D₃ = {a, b}.
 - Now alldiff(x₁, x₂, x₃) is not hyper-arc consistent and the projection rule removes values a, b from the domain of x₁.
 - ► However, the corresponding set of constraints x₁ ≠ x₂, x₁ ≠ x₃, x₂ ≠ x₃ is hyper-arc consistent and the projection rule is not able to remove any values.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Global Constraints: Other Examples

- When solving a CSP problem often a special purpose (global) constraint and an efficient propagation algorithm for it needs to be developed to make the solution technique more efficient.
- ▶ There is a wide range of such global constraints:
 - cumulative
 - diff-n
 - cycle
 - sort
 - alldifferent and permutation
 - symmetric alldifferent
 - global cardinality (with cost)
 - sequence
 - stretch
 - minimum global distance
 - k-diff

. . .

number of distinct values

I.N. & P.O. Spring 2006

-79.4201 Search Problems and Algorithms

CSP: Local Search

- A tabu search algorithm by Galiner and Hao is one of the best performing general local search algorithms for CSPs.
- **TS-GH** algorithm (Galiner and Hao, 1997):
 - Initialize each variable by selecting a value uniformly at random from its domain.
 - In each local step select among all variable-value pairs (x', v') such that x' appears in a constraint that is unsatisfied under the current assignment and v' is in the domain of v', a pair (x, v) that leads to a maximal decrease in the number of violated constraints.
 - If there multiple such pairs, one of them is chosen uniformly at random.
 - After changing the assignment of x to v, the pair (x, v) is declared tabu for tt steps.
- For competitive performance, the evaluation function for variable-value pairs needs to be implemented using caching and incremental updating techniques.

CSP: Local Search

- GSAT and WalkSAT type of local search algorithms (see Lecture 4) can be generalized to CSPs.
- As an example we consider Min Conflict Heuristic (MCH) algorithm (Minton et al, 1990): Given a CSP instance P
 - Initialize each variable by selecting a value uniformly at random from its domain.
 - In each local step select a variable x_i uniformly at random from from the conflict set, which is the set of variables appearing in a constraint that is unsatisfied under the current assignment.
 - A new value v for x_i is selected from the domain of x_i such that by assigning v to x_i the number of conflicting constraints is minimized.
 - If there is more than one value with that property, one of the minimizing values is chosen uniformly at random.
- One can add also a random walk step like in NoisyGSAT (WMCH algorithm; Wallace and Freuder, 1995).

I.N. & P.O. Spring 2006

-79.4201 Search Problems and Algorithms

SAT: Local Search

- Local search methods have difficulties with structured problem instances.
- For good performance parameter tuning is essential. (For example in WalkSAT: the noise parameter p and the max_flips parameter.)
- Finding good parameter values is a non-trivial problem which typically requires substantial experimentation and experience.
- WalkSAT revised: adding greediness and adaptivity
 Novelty+ and AdaptiveNovelty+ algorithms

WalkSAT

function WalkSAT(*F*,*p*): $t \leftarrow$ initial truth assignment; while flips < max_flips do if t satisfies F then return t else choose a random unsatisfied clause C in F; if some variables in C can be flipped without breaking any presently satisfied clauses, then pick one such variable x at random; else: with probability p, pick a variable x in C unif. at random; with probability (1 - p), do basic GSAT move: find a variable x in C whose flipping causes largest decrease in c(t): $t \leftarrow (t \text{ with variable } x \text{ flipped})$ end while: return t. ・ロト・日本・ヨト・ヨト ヨー シタマ

I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms

Adaptive WalkSat and Adaptive Novelty+

- A suitable value for the noise parameter p is crucial for competitive performance of WalkSAT and its variants.
- Too low noise settings lead to stagnation behaviour and too high settings to long running times.
- Instead of a static setting, a dynamically changing noise setting can be used.
- Adaptive WalkSat and Novelty+ (Hoos, 2002): Two parameters θ and φ are given.
 - At the beginning the search is maximally greedy (p = 0).
 - There is a search stagnation if no improvement in the evaluation function value has been observed over the last $m\theta$ search steps where *m* is the number of clauses in the instance.
 - In this situation the noise value is increased by p := p + (1 − p) φ and if after this the search stagnation continues, p is further increased in the same way.
 - If there is an improvement in the evaluation function value, then the noise value is decreased by p := p − pφ/2.

・ 母 ト ・ ヨ ト ・ ヨ ・ つ へ ぐ

T–79.4201 Search Problems and Algorithms

Novelty+

- WalkSAT can be made greedier using a history-based variable selection mechanism.
- The age of a variable is the number of local search steps since the variable was last flipped.
- Novelty algorithm (McAllester et al., 1997): After choosing an unsatisfiable clause the variable to be flipped is selected as follows:
 - If the variable with the highest score does not have minimal age among the variables within the same clause, it is always selected.
 - Else it is only selected with probability 1 p, where p is a parameter called noise setting.
 - Otherwise the variable with the next lower score is selected.
 - When sorting variables according to their scores, ties are broken according to decreasing age.
- In Novelty+ (Hoos 1998) a random walk step is added:
 with probability 1 wp the variable to be flipped is selected according to the Novelty mechanism and in the other cases a random walk step is performed.

.N. & P.O. Spring 2006

-79.4201 Search Problems and Algorithms

Tools for SAT

- The development of SAT solvers is strongly driven by SAT competitions (http://www.satcompetition.org/)
- There is a wide range of efficient solvers also available in public domain.
- See for example http://www.satcompetition.org/ for solvers that ranked well in previous SAT competitions. SAT2005:

SatELiteGTI, MiniSAT 1.13, zChaff_rand, HaifaSAT, Vallst, March_dl, kcnf-2004, Dew_Satzla, Jerusat 1.31 B, Hsat1, ranov, g2wsat, VW

Tools for CSP

- Constraint programming systems offer a rich set of supported constraint types with efficient propagation algorithms and primitives for implementing search.
- Typically the user needs to program, for example, the search algorithm, splitting technique, and heuristic.
- See, for example, http://4c.ucc.ie/~tw/csplib/links.html for available constraint solvers:

CLAIRE, ECLiPse, GNU Prolog, Oz, Sicstus Prolog, ILOG Solver, ...

<ロ> <日> <日> <日> <10</p> <10</p

I.N. & P.O. Spring 2006

-79.4201 Search Problems and Algorithms

Linear and Integer Programming

 Computationally there is a fundamental difference between LP and IP:

LP problems can be solved efficiently (in polynomial time) but IP problems are NP-complete (and all known algorithms have an exponential worst-case running time).

- MIP offers an attractive framework for solving (search and) optimization problems:
 - Continuous variables can be handled efficiently along with discrete variables.
 - Powerful LP solution techniques can be exploited in the IP case through linear relaxation.
 - Bounds on deviation from optimality can be generated even when optimal solutions are not proven.

Linear and Integer Programming

- Linear and Integer Programming can be thought to be a subclass of constraint programming where there are
 - two types of variables: real valued and integer valued
 - only one type of constraint: linear (in)equalities.
- Linear Programming (LP): only real valued variables.
- Integer Programming (IP): only integer variables.
- Mixed Integer Programming (MIP): both integer and real valued variables.

- * ロ * * 母 * * 目 * * 目 * * のへで

I.N. & P.O. Spring 2006

F-79.4201 Search Problems and Algorithms

MIP: Basic Concepts

- Let *x* be a vector of variables $x = (x_1, ..., x_n)$.
- ► Each variable in a set *I* of variables is required to take integer values while the remaining variables can take any real value. Each variable can have a range represented by vectors $I = (I_1, ..., I_n)$ and $u = (u_1, ..., u_n)$ such that for all $i, I_i \le x_i \le u_i$, that is, $I \le x \le u$.
- A linear constraint on the variables is of the form

$$\Sigma_j a_j x_j = b$$
 or $ax = b$

where *a* is a vector coefficients $a = (a_1, ..., a_n)$ and *b* is a scalar. The relation symbol '=' can also be '≤' or '≥'.

A linear objective function is represented by a vector of coefficients c = (c₁,..., c_n) with the objective of minimizing (or maximizing) Σ_ic_ix_i = cx.

I.N. & P.O. Spring 2006

・ロト・日本・モト・モト・ヨーのへの

MIP: Basic Concepts

- A (mixed) integer program consists of a single linear objective and a set of constraints.
- If we create a matrix A = (a_{ij}) where a_{ij} is the coefficient for variable *j* in the *i*th constraint, then a MIP can be written as:

 $\begin{array}{l} \min cx \\ s.t. \quad Ax = b \\ I \leq x \leq u \\ x_j \text{ is integer for all } j \in I \end{array}$

An Example. SET COVER

INSTANCE: A family of sets $F = \{S_1, ..., S_n\}$ of subsets of a finite set U.

QUESTION: Find an *I*-cover of U (a set of *I* sets from F whose union is U) with the smallest number *I* of sets.

- For each set S_i an integer variable x_i such that $0 \le x_i \le 1$
- For each element u of U a constraint

 $a_1x_1+\cdots+a_nx_n\geq 1$

where the coefficient $a_i = 1$ if $u \in S_i$ and otherwise $a_i = 0$.

• Objective: $\min x_1 + \cdots + x_n$

・ キョット (日) ・ (日)・ (日)・ (日)・

I.N. & P.O. Spring 2006

-79.4201 Search Problems and Algorithms

MIP: Basic Concepts

- A feasible solution to a MIP is an assignment of values to the variables in the problem such that the assignment satisfies all the linear constraints and range constraints and for each variable in *I* it assigns an integer value.
- A program is feasible if it has a feasible solution otherwise it is said to be infeasible.
- An optimal solution is a feasible solution that gives the minimal value of the objective function among all feasible solutions.
- A program is unbounded (from below) if for all λ ∈ R there is a feasible solution for which the value of the objective function is at most λ.

-79.4201 Search Problems and Algorithms

.N. & P.O. Spring 2006

Modelling: Logical Constraints

- Use binary integer variables ($0 \le x \le 1$).
- ▶ Disjunction: x_3 has the value of the boolean expression $x_1 \lor x_2$:

$$\begin{array}{l} x_3 \geq x1 \\ x_3 \geq x2 \\ x_3 \leq x_1 + x_2 \end{array}$$

• Conjunction: x_3 has the value of the boolean expression $x_1 \wedge x_2$:

$$x_3 \le x_1$$

 $x_3 \le x_2$
 $x_3 \ge x_1 + x_2 - 1$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへ⊙

▲ロ▶▲御▶▲臣▶▲臣▶ 臣 のへで

Modelling SAT

- ► Given a SAT instance *F* in CNF, introduce
- For each Boolean variable in *F*, a binary integer variable *x* (0 ≤ *x* ≤ 1).
- ▶ for each clause $I_i \lor \cdots \lor I_n$ in *F*, a constraint

 $a_1x_1+\cdots+a_nx_n\geq 1-m$

where the coefficient $a_i = 1$ if the literal l_i is positive and otherwise $a_i = -1$ and *m* is the number of negative literals in the clause.

Then F is satisfiable iff the corresponding set of constraints has a feasible solution.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

I.N. & P.O. Spring 2006