T-79.4201 Search Problems and Algorithms

Convergence of Simulated Annealing

View the search space X with neighbourhood structure N as a
graph (X,N). Assume that this graph is undirected, connected,
and of degree r. (Each node=solution has exactly

r neighbours.)

Denote by X* C X the set of globally optimal solutions. The
following result was proved by Geman & Geman (1984) and
Mitra, Romeo & Sangiovanni-Vincentelli (1986):

I.N. & P.O. Spring 2006

Then the distribution of states visited by the computation
converges in the limit to 1t*, where

0, if x € X\ X*,
- \

1/|X*|, ifx e X*.

I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms

Theorem. Consider a simulated annealing computation on
structure (X,N,c). Assume the neighbourhood graph (X,N) is
connected and regular of degree r. Denote:

A =max{c(x') —c(x) |x € X,x" € N(x)}.
Choose

L> min max dist(x,x"),
XEX\X*X*EX*

where dist(x, x*) is the shortest-path distance in graph (X,N)
from node x to node x*. Suppose the cooling schedule used is
of the form (To,L), (T1,L),(T2,L),..., where for each cooling
stage ¢ > 2:

I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms

3.5 The A* Algorithm

Note: A* is actually a complete algorithm, so should have been
presented earlier.

A* is basically a reformulation of the branch-and-bound search
technique in terms of path search in graphs.

Given:

» search graph [neighbourhood structure] (X,N)
» start node Xg € X

» set of goal nodes X* C X

» edge costs c(x,x’) >0 for x € X, x" € N(x)

Task: find a (minimum-cost) path from xo to some x € X*.

I.N. & P.O. Spring 2006

A*: Path Length Estimation

An important characteristic of A* is that the remaining distance
from a node x to a goal node is estimated by some heuristic
h(x) > 0.

As the algorithm visits a new node, it is placed in a set OPEN.
Nodes in OPEN are selected for further exploration in
increasing order of the evaluation function

f(x) =9 (x) +h(x),
where g(x) = dist(xo,x) is the shortest presently known
distance from the start node.

A heuristic h(x) is admissible, if it underestimates the true
remaining minimal distance h*(x), i.e. if for all x € X:

h(x) <h*(x) := min dist(x,x").

- x*exX*

T-79.4201 Search Problems and Algorithms

I.N. & P.O. Spring 2006 I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms T-79.4201 Search Problems and Algorithms

function A*(X, N, xg, ¢, h):
place xo in OPEN; set g(xo) = 0;
while OPEN # 0 do
choose some x € OPEN for which f(x) is minimum;
if x € X* then return {found path to x};
move x from OPEN to CLOSED;
for all x € N(x) do
if x is not yet in OPEN or CLOSED then
estimate h(x’);
compute f(x') =g(x’) +h(x’),
where g(x’) = g(x) +c(x,x);
place x” in OPEN
else {x’ is already in OPEN or CLOSED}
recompute f(x") = g(x") +h(x");
if x’ was in CLOSED and its f-value decreased then
move x’ from CLOSED to OPEN
end while ;
return fail {no path to goal found}.

I.N. & P.O. Spring 2006

A*. Convergence
A basic property of the A* algorithm is the following:

Theorem. Assume that the heuristic h is admissible. If the graph
(X,N) is finite, and some path from xo to X* exists, then A*
returns one with a minimum cost.

Note 1: This result holds even for infinite search graphs
satisfying some structural conditions. (Every node has only
finitely many neighbours and all infinite paths have infinite cost.)
Note 2: Convergence of the algorithm can be guaranteed also

for nonadmissible heuristics, but very little can be said about
the cost of the paths returned in that case.

Note 3: The special case h(x) = 0 reduces to the well-known
Dijkstra’s algorithm for shortest paths in graphs.

I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms T-79.4201 Search Problems and Algorithms

A*: Examples

In these two examples of A* search in graphs with obstacles,
the heuristic h(x) is taken to be the Manhattan (square-block)
distance from a node x to the goal node x* when the obstacles
are ignored. The white nodes are in OPEN and the black nodes
in CLOSED when the algorithm terminates.

3.6 Tabu Search (Glover 1986)
Note: Now we return to local search algorithms.

Idea: Prevent a local search algorithm from getting stuck at a
local minimum, or cycling at a set of solutions with the same
objective function value, by maintaining a limited history of
recent solutions (tabu list) and excluding those solutions from
the move selection process.

I.N. & P.O. Spring 2006 I.N. & P.O. Spring 2006
T-79.4201 Search Problems and Algorithms T-79.4201 Search Problems and Algorithms

function TABU(c, tt):
x « initial feasible solution;
initialise TL to {x};
while moves < max moves do Tabu Search: Practical Considerations

remove from TL solutions entered there : . . .
To save tabu list memory and access time, it may be worthwhile
more than tt moves ago;

) - not to store complete solutions in the list, but just the recent
choose an x’ € N(x) \ TL of minimum cost; . . .
moves (local transformations). This, however, introduces the
add x to TL;)
problem that a move may be superfluously tabu at time t from
the context of some earlier solution x./, t’ < t, whereas it would
lead to an interesting new solution in the context of solution x;.

X «— x'
end while ;
return best x seen so far.

To resolve this issue, heuristics for overriding the tabu rule have
been introduced, such as “always accept objective-improving
moves” (i.e. such that c(x") < c(x)).

I.N. & P.O. Spring 2006 I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms T-79.4201 Search Problems and Algorithms

3.7 Record-to-Record Travel (Dueck 1993)

Idea: Candidate solution can move freely within a tolerance d of
the best (“record”) solution value found so far. When a new
record solupon is found, the tolerance level falls RRT in Action (&= 2)
correspondingly.
function RRT(c, 9):
x « initial feasible solution;
X* «—x; ¢* «—c(x);
while moves < max_moves do
choose some x’ € N(x);
if c(x’) <c*+dthen x «— x’;
if ¢(x’) < c* then
x* —x'; ¢* —c(x')
end while ;
return x*.

I.N. & P.O. Spring 2006 I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms T-79.4201 Search Problems and Algorithms

RRT in Action (6 =2) RRT in Action (6 = 2)

I.N. & P.O. Spring 2006 I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms T-79.4201 Search Problems and Algorithms

RRT in Action (& = 2) RRT in Action (d = 2)

I.N. & P.O. Spring 2006 I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms T-79.4201 Search Problems and Algorithms

RRT in Action (d = 2) RRT in Action (0 = 2)

I.N. & P.O. Spring 2006 I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms

RRT in Action (6 =2)

I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms

NoisyGSAT (Selman etal. ~ 1996)
Idea: Augment GSAT by a fraction p of random walk moves.

function NOiISyGSAT(F,p):
t « initial truth assignment;
while flips < max_flips do
if t satisfies F then return t
else
with probability p, pick a variable x
uniformly at random;
with probability (1 — p), do basic GSAT move:
find a variable x whose flipping causes
largest decrease in c(t) (if no decrease is
possible, then smallest increase);
t — (t with variable x flipped)
end while ;
return t.

I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms

3.8 Local Search for Satisfiability: GSAT (Gu, Selmanetal. 1 992)

Idea: View propositional satisfiability as an optimisation
problem, where ¢ = c¢(t) is the number of unsatisfied clauses in
formula F under truth assignment t. Apply a greedy
(deterministic) local search strategy to minimise c(t).

function GSAT(F):
t « initial truth assignment;
while flips < max_flips do
if t satisfies F then return t
else
find a variable x whose flipping in t causes
largest decrease in c(t) (if no decrease is
possible, then smallest increase);
t — (t with variable x flipped)
end while ;
return t.

I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms

3.9 The WalkSAT Algorithm (Selman et al. 1996)

Idea: NoisyGSAT focused on the unsatisfied clauses.

I.N. & P.O. Spring 2006

function WalkSAT(F,p):

t « initial truth assignment;
while flips < max_flips do
if t satisfies F then return t else
choose a random unsatisfied clause C in F;
if some variables in C can be flipped without
breaking any presently satisfied clauses,
then pick one such variable x at random; else:
with probability p, pick a variable x in C unif. at random;
with probability (1 —p), do basic GSAT move:
find a variable x in C whose flipping causes
largest decrease in c(t);
t < (t with variable x flipped)
end while ;
return t.

I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms

WalkSAT vs. NoisyGSAT

The focusing seems to be important: in the (unsystematic)
experiments in Selman et al. (1996), WalkSAT outperforms
NoisyGSAT by several orders of magnitude. Later experimental
evidence by other authors corroborates this.

Good values for the “noise” parameter p seem to be about

p ~ 0.5. For instance, for large randomly generated 3-SAT
formulas with clauses-to-variables ratio a near the “satisfiability
threshold” a = 4.267, the optimal value of p seems to be about
p =0.57.

I.N. & P.O. Spring 2006

