
T–79.4201 Search Problems and Algorithms

Convergence of Simulated Annealing

View the search space X with neighbourhood structure N as a
graph (X ,N). Assume that this graph is undirected, connected,
and of degree r . (Each node=solution has exactly
r neighbours.)

Denote by X ∗ ⊆ X the set of globally optimal solutions. The
following result was proved by Geman & Geman (1984) and
Mitra, Romeo & Sangiovanni-Vincentelli (1986):

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Theorem. Consider a simulated annealing computation on
structure (X ,N,c). Assume the neighbourhood graph (X ,N) is
connected and regular of degree r . Denote:

∆ = max{c(x ′)− c(x) | x ∈ X ,x ′ ∈ N(x)}.

Choose

L ≥ min
x∈X\X∗

max
x∗∈X∗

dist(x ,x∗),

where dist(x ,x∗) is the shortest-path distance in graph (X ,N)
from node x to node x∗. Suppose the cooling schedule used is
of the form 〈T0,L〉,〈T1,L〉,〈T2,L〉, . . . , where for each cooling
stage ` ≥ 2:

T` ≥
L∆

ln`
(but T` −−→

`→∞
0).

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Then the distribution of states visited by the computation
converges in the limit to π∗, where

π∗
x =

{

0, if x ∈ X \X ∗,
1/|X ∗|, if x ∈ X ∗.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

3.5 The A* Algorithm

Note: A* is actually a complete algorithm, so should have been
presented earlier.

A* is basically a reformulation of the branch-and-bound search
technique in terms of path search in graphs.

Given:

I search graph [neighbourhood structure] (X ,N)

I start node x0 ∈ X

I set of goal nodes X ∗ ⊆ X

I edge costs c(x ,x ′) ≥ 0 for x ∈ X , x ′ ∈ N(x)

Task: find a (minimum-cost) path from x0 to some x ∈ X ∗.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

A*: Path Length Estimation

An important characteristic of A* is that the remaining distance
from a node x to a goal node is estimated by some heuristic
h(x) ≥ 0.

As the algorithm visits a new node, it is placed in a set OPEN.
Nodes in OPEN are selected for further exploration in
increasing order of the evaluation function

f (x) = g(x)+h(x),

where g(x) = dist(x0,x) is the shortest presently known
distance from the start node.

A heuristic h(x) is admissible, if it underestimates the true
remaining minimal distance h∗(x), i.e. if for all x ∈ X :

h(x) ≤ h∗(x) := min
x∗∈X∗

dist(x ,x∗).

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

function A*(X , N, x0, c, h):
place x0 in OPEN; set g(x0) = 0;
while OPEN 6= /0 do

choose some x ∈ OPEN for which f (x) is minimum;
if x ∈ X ∗ then return {found path to x};
move x from OPEN to CLOSED;
for all x ′ ∈ N(x) do

if x ′ is not yet in OPEN or CLOSED then
estimate h(x ′);
compute f (x ′) = g(x ′)+h(x ′),

where g(x ′) = g(x)+ c(x ,x ′);
place x ′ in OPEN

else {x ′ is already in OPEN or CLOSED}
recompute f (x ′) = g(x ′)+h(x ′);
if x ′ was in CLOSED and its f -value decreased then

move x ′ from CLOSED to OPEN
end while ;
return fail {no path to goal found}.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

A*: Convergence

A basic property of the A* algorithm is the following:

Theorem. Assume that the heuristic h is admissible. If the graph
(X ,N) is finite, and some path from x0 to X ∗ exists, then A*
returns one with a minimum cost.

Note 1: This result holds even for infinite search graphs
satisfying some structural conditions. (Every node has only
finitely many neighbours and all infinite paths have infinite cost.)

Note 2: Convergence of the algorithm can be guaranteed also
for nonadmissible heuristics, but very little can be said about
the cost of the paths returned in that case.

Note 3: The special case h(x) ≡ 0 reduces to the well-known
Dijkstra’s algorithm for shortest paths in graphs.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

A*: Examples

In these two examples of A* search in graphs with obstacles,
the heuristic h(x) is taken to be the Manhattan (square-block)
distance from a node x to the goal node x∗ when the obstacles
are ignored. The white nodes are in OPEN and the black nodes
in CLOSED when the algorithm terminates.

22

22

23

21

24

2019181716151413

8

8

8

7

9

6

10

5

11

4

3

2

2

2

3

24

24

20

64

21

5

6

6

6

6

6

6

6

8

7

7

5

7

5

7

5

7

6

8

8

8

8

4

4

10

7

7

9

9

7

5

3

9

4

10

10

10

2

2

5

9

11

9

3

1

12

2

8

8

4

4

13

3

11

9

7

5

3

14

14

14

15

1

15

13

16

2

0

12

12

17

1

1

13

11

18

4

2

10

10

10

10

23

19

3

3

11

9

11

9

22

20

4

12

12

8

8

6

21

5

5

13

11

9

7

20 2322

33

17

34

4

16

24

33

5

19

23

34

34

4

18

22

7

13

6

12

9

15

8

14

10

10

11

10

10

10

13121110 14

31

29

5

21

32

30

4

4

20

29

32

30

4

9

25

8

24

27

7

28

6

3

4

5

6

7

8

9

21

21

21

21

21

22

20

20

22

20

19

19

19

23

20

22

18

18

33

17

23

19

21

17

32

18

20

20

16

15

21

21

15

16

22

22

14

13

13

14

12

11

11

12

10

9

9

10

89

9

11

5

5

5

5

5

5

7

7

9

12

8

8

8

6

6

4

4

6

4

8

9

7

7

7

3

3

7

9

7

5

11

10

6

4

6

8

2

6

10

8

6

10

5

9

9

1

9

1

11

9

34

8

10

0

8

2

10

4

12

13

3

7

11

7

3

3

11

12

8

10

6

4

2

12

2

29

3

3

3

19

13

13

13

13

13

28

4

20

2

12

12

14

12

14

31

3

11

11

15

11

17

15

1

19

30

2

10

12

14

10

18

16

2

18

7

25

5

9

9

9

17

17

9

17

3

8

4

8

10

10

16

18

16

8

4

24

27

5

23

7

7

11

11

15

19

15

7

19

5

23

26

6

24

6

8

10

12

16

18

14

6

20

6

22

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

3.6 Tabu Search (Glover 1986)

Note: Now we return to local search algorithms.

Idea: Prevent a local search algorithm from getting stuck at a
local minimum, or cycling at a set of solutions with the same
objective function value, by maintaining a limited history of
recent solutions (tabu list) and excluding those solutions from
the move selection process.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

function TABU(c, tt):
x ← initial feasible solution;
initialise TL to {x};
while moves < max_moves do

remove from TL solutions entered there
more than tt moves ago;

choose an x ′ ∈ N(x)\TL of minimum cost;
add x to TL;
x ← x ′

end while ;
return best x seen so far.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Tabu Search: Practical Considerations

To save tabu list memory and access time, it may be worthwhile
not to store complete solutions in the list, but just the recent
moves (local transformations). This, however, introduces the
problem that a move may be superfluously tabu at time t from
the context of some earlier solution xt ′ , t ′ < t, whereas it would
lead to an interesting new solution in the context of solution xt .

To resolve this issue, heuristics for overriding the tabu rule have
been introduced, such as “always accept objective-improving
moves” (i.e. such that c(x ′) < c(x)).

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

3.7 Record-to-Record Travel (Dueck 1993)

Idea: Candidate solution can move freely within a tolerance δ of
the best (“record”) solution value found so far. When a new
record solution is found, the tolerance level falls
correspondingly.

function RRT(c, δ):
x ← initial feasible solution;
x∗ ← x ; c∗ ← c(x);
while moves < max_moves do

choose some x ′ ∈ N(x);
if c(x ′) ≤ c∗ +δ then x ← x ′;
if c(x ′) < c∗ then

x∗ ← x ′; c∗ ← c(x ′)
end while ;
return x∗.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

RRT in Action (δ = 2)

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

RRT in Action (δ = 2)

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

RRT in Action (δ = 2)

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

RRT in Action (δ = 2)

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

RRT in Action (δ = 2)

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

RRT in Action (δ = 2)

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

RRT in Action (δ = 2)

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

RRT in Action (δ = 2)

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

3.8 Local Search for Satisfiability: GSAT (Gu, Selman et al. 1 992)

Idea: View propositional satisfiability as an optimisation
problem, where c = cF (t) is the number of unsatisfied clauses in
formula F under truth assignment t. Apply a greedy
(deterministic) local search strategy to minimise c(t).

function GSAT(F):
t ← initial truth assignment;
while flips < max_flips do

if t satisfies F then return t
else

find a variable x whose flipping in t causes
largest decrease in c(t) (if no decrease is
possible, then smallest increase);

t ← (t with variable x flipped)
end while ;
return t.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

NoisyGSAT (Selman et al. ∼ 1996)

Idea: Augment GSAT by a fraction p of random walk moves.

function NoisyGSAT(F ,p):
t ← initial truth assignment;
while flips < max_flips do

if t satisfies F then return t
else

with probability p, pick a variable x
uniformly at random;

with probability (1−p), do basic GSAT move:
find a variable x whose flipping causes
largest decrease in c(t) (if no decrease is
possible, then smallest increase);

t ← (t with variable x flipped)
end while ;
return t.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

3.9 The WalkSAT Algorithm (Selman et al. 1996)

Idea: NoisyGSAT focused on the unsatisfied clauses.
I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

function WalkSAT(F ,p):
t ← initial truth assignment;
while flips < max_flips do

if t satisfies F then return t else
choose a random unsatisfied clause C in F ;
if some variables in C can be flipped without

breaking any presently satisfied clauses,
then pick one such variable x at random; else:

with probability p, pick a variable x in C unif. at random;
with probability (1−p), do basic GSAT move:

find a variable x in C whose flipping causes
largest decrease in c(t);

t ← (t with variable x flipped)
end while ;
return t.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

WalkSAT vs. NoisyGSAT

The focusing seems to be important: in the (unsystematic)
experiments in Selman et al. (1996), WalkSAT outperforms
NoisyGSAT by several orders of magnitude. Later experimental
evidence by other authors corroborates this.

Good values for the “noise” parameter p seem to be about
p ≈ 0.5. For instance, for large randomly generated 3-SAT
formulas with clauses-to-variables ratio α near the “satisfiability
threshold” α = 4.267, the optimal value of p seems to be about
p = 0.57.

I.N. & P.O. Spring 2006

