Convergence of Simulated Annealing

View the search space X with neighbourhood structure N as a graph (X, N). Assume that this graph is undirected, connected, and of degree r. (Each node=solution has exactly r neighbours.)

Denote by $X^* \subseteq X$ the set of globally optimal solutions. The following result was proved by Geman & Geman (1984) and Mitra, Romeo & Sangiovanni-Vincentelli (1986):

Theorem. Consider a simulated annealing computation on structure (X, N, c). Assume the neighbourhood graph (X, N) is connected and regular of degree *r*. Denote:

$$\Delta = \max\{c(x') - c(x) \mid x \in X, x' \in N(x)\}.$$

Choose

$$L \geq \min_{x \in X \setminus X^*} \max_{x^* \in X^*} \operatorname{dist}(x, x^*),$$

where dist(*x*, *x*^{*}) is the shortest-path distance in graph (*X*, *N*) from node *x* to node *x*^{*}. Suppose the cooling schedule used is of the form $\langle T_0, L \rangle, \langle T_1, L \rangle, \langle T_2, L \rangle, \ldots$, where for each cooling stage $\ell \ge 2$:

$$T_{\ell} \geq \frac{L\Delta}{\ln \ell} \quad (\text{but } T_{\ell} \xrightarrow[\ell \to \infty]{} 0).$$

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

I.N. & P.O. Spring 2006

Then the distribution of states visited by the computation converges in the limit to π^* , where

$$\pi_x^* = \begin{cases} 0, & \text{if } x \in X \setminus X^*, \\ 1/|X^*|, & \text{if } x \in X^*. \end{cases}$$

-79.4201 Search Problems and Algorithms

3.5 The A* Algorithm

Note: A* is actually a complete algorithm, so should have been presented earlier.

A* is basically a reformulation of the branch-and-bound search technique in terms of path search in graphs.

Given:

- search graph [neighbourhood structure] (X, N)
- ▶ start node $x_0 \in X$
- ▶ set of goal nodes $X^* \subseteq X$
- edge costs $c(x, x') \ge 0$ for $x \in X$, $x' \in N(x)$

Task: find a (minimum-cost) path from x_0 to some $x \in X^*$.

A*: Path Length Estimation

An important characteristic of A* is that the remaining distance from a node x to a goal node is estimated by some *heuristic* $h(x) \geq 0.$

As the algorithm visits a new node, it is placed in a set OPEN. Nodes in OPEN are selected for further exploration in increasing order of the evaluation function

$$f(x)=g(x)+h(x),$$

where $g(x) = \text{dist}(x_0, x)$ is the shortest presently known distance from the start node.

A heuristic h(x) is admissible, if it underestimates the true remaining minimal distance $h^*(x)$, i.e. if for all $x \in X$:

$$h(x) \leq h^*(x) := \min_{x^* \in X^*} \operatorname{dist}(x, x^*)$$

I.N. & P.O. Spring 2006

-79.4201 Search Problems and Algorithms function $A^*(X, N, x_0, c, h)$: place x_0 in OPEN; set $g(x_0) = 0$; while OPEN $\neq 0$ do choose some $x \in OPEN$ for which f(x) is minimum; if $x \in X^*$ then return {found path to x}; move x from OPEN to CLOSED; for all $x' \in N(x)$ do if x' is not yet in OPEN or CLOSED then estimate h(x'): compute f(x') = g(x') + h(x'), where g(x') = g(x) + c(x, x');place x' in OPEN else {x' is already in OPEN or CLOSED} recompute f(x') = g(x') + h(x'); if x' was in CLOSED and its *f*-value decreased ther move x' from CLOSED to OPEN end while: return fail {no path to goal found}. 지 다 지 귀 지 지 다 지 다 지 다 지

CONTRACTOR AND A DESCRIPTION

I.N. & P.O. Spring 2006

-79.4201 Search Problems and Algorithms

A*: Convergence

A basic property of the A* algorithm is the following:

Theorem. Assume that the heuristic *h* is admissible. If the graph (X, N) is finite, and some path from x_0 to X^* exists, then A* returns one with a minimum cost.

Note 1: This result holds even for infinite search graphs satisfying some structural conditions. (Every node has only finitely many neighbours and all infinite paths have infinite cost.)

Note 2: Convergence of the algorithm can be guaranteed also for nonadmissible heuristics, but very little can be said about the cost of the paths returned in that case.

Note 3: The special case $h(x) \equiv 0$ reduces to the well-known Dijkstra's algorithm for shortest paths in graphs.

A*: Examples

In these two examples of A^{*} search in graphs with obstacles, the heuristic h(x) is taken to be the Manhattan (square-block) distance from a node x to the goal node x^{*} when the obstacles are ignored. The white nodes are in OPEN and the black nodes in CLOSED when the algorithm terminates.

I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms

function TABU(*c*, *tt*): $x \leftarrow$ initial feasible solution; initialise TL to {*x*}; while moves < max_moves do remove from TL solutions entered there more than *tt* moves ago; choose an $x' \in N(x) \setminus TL$ of minimum cost; add *x* to TL; $x \leftarrow x'$ end while; return best *x* seen so far.

3.6 Tabu Search (Glover 1986)

Note: Now we return to local search algorithms.

Idea: Prevent a local search algorithm from getting stuck at a local minimum, or cycling at a set of solutions with the same objective function value, by maintaining a limited history of recent solutions (*tabu list*) and excluding those solutions from the move selection process.

.N. & P.O. Spring 2006

-79.4201 Search Problems and Algorithms

Tabu Search: Practical Considerations

To save tabu list memory and access time, it may be worthwhile not to store complete solutions in the list, but just the recent *moves* (local transformations). This, however, introduces the problem that a move may be superfluously tabu at time *t* from the context of some earlier solution $x_{t'}$, t' < t, whereas it would lead to an interesting new solution in the context of solution x_t .

To resolve this issue, heuristics for overriding the tabu rule have been introduced, such as "always accept objective-improving moves" (i.e. such that c(x') < c(x)).

3.7 Record-to-Record Travel (Dueck 1993)

Idea: Candidate solution can move freely within a tolerance δ of the best ("record") solution value found so far. When a new record solution is found, the tolerance level falls correspondingly.

function RRT(
$$c$$
, δ):

 $\begin{array}{l} x \leftarrow \text{ initial feasible solution;} \\ x^* \leftarrow x; \ c^* \leftarrow c(x); \\ \text{while moves} < \max_\text{moves do} \\ \text{ choose some } x' \in N(x); \\ \text{ if } c(x') \leq c^* + \delta \text{ then } x \leftarrow x'; \\ \text{ if } c(x') < c^* \text{ then} \\ x^* \leftarrow x'; \ c^* \leftarrow c(x') \\ \text{ end while;} \end{array}$

return x*.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

RRT in Action ($\delta = 2$)

		_

T-79.4201 Search Problems and Algorithms

I.N. & P.O. Spring 2006

RRT in Action ($\delta = 2$)

RRT in Action ($\delta = 2$)

吉 いっか 見い うちい うちい しち

RRT in Action ($\delta = 2$)

	• • • •	< @ >	${}^{*}\equiv {}^{*}$	◆国→	1	596
N. & P.O. Spring 2006						
-79.4201 Search Problems and Algorithms						

$\bullet \square \to$	< 🗗 🕨	< 三→	* 厘 ▶	-2	

T–79.4201 Search Problems and Algorithms

I.N. & P.O. Spring 2006

RRT in Action ($\delta = 2$)

RRT in Action (δ = 2)

RRT in Action ($\delta = 2$)

3.8 Local Search for Satisfiability: GSAT (Gu, Selman et al. 1992)

Idea: View propositional satisfiability as an optimisation problem, where $c = c_F(t)$ is the number of unsatisfied clauses in formula *F* under truth assignment *t*. Apply a greedy (deterministic) local search strategy to minimise c(t).

function GSAT(F):

 $t \leftarrow$ initial truth assignment;

- while flips $< max_flips$ do
 - if t satisfies F then return t

else

find a variable x whose flipping in t causes largest decrease in c(t) (if no decrease is possible, then smallest increase):

 $t \leftarrow (t \text{ with variable } x \text{ flipped})$

end while;

return t.

-79.4201 Search Problems and Algorithms

.N. & P.O. Spring 2006

I.N. & P.O. Spring 2006

-79.4201 Search Problems and Algorithms

NoisyGSAT (Selman et al. \sim 1996)

Idea: Augment GSAT by a fraction p of random walk moves.

function NoisyGSAT(*F*,*p*):

 $t \leftarrow$ initial truth assignment;

```
while flips < max flips do
```

if t satisfies F then return t

else

with probability *p*, pick a variable *x* uniformly at random;
with probability (1 - *p*), do basic GSAT move: find a variable *x* whose flipping causes

largest decrease in c(t) (if no decrease is possible, then smallest increase);

 $t \leftarrow (t \text{ with variable } x \text{ flipped})$

end while;

return t.

(日) (部) (E) (E) (E) (0)

Idea: NoisyGSAT focused on the unsatisfied clauses.

3.9 The WalkSAT Algorithm (Selman et al. 1996)

 $t \leftarrow$ initial truth assignment;

while flips $< \max$ flips do

if t satisfies F then return t else choose a random unsatisfied clause C in F; if some variables in C can be flipped without breaking any presently satisfied clauses, then pick one such variable x at random; else: with probability p, pick a variable x in C unif. at random; with probability (1-p), do basic GSAT move: find a variable x in C whose flipping causes largest decrease in c(t); $t \leftarrow (t \text{ with variable } x \text{ flipped})$ end while;

return t.

WalkSAT vs. NoisyGSAT

The focusing seems to be important: in the (unsystematic) experiments in Selman et al. (1996), WalkSAT outperforms NoisyGSAT by several orders of magnitude. Later experimental evidence by other authors corroborates this.

Good values for the "noise" parameter *p* seem to be about $p \approx 0.5$. For instance, for large randomly generated 3-SAT formulas with clauses-to-variables ratio α near the "satisfiability threshold" $\alpha = 4.267$, the optimal value of *p* seems to be about p = 0.57.

(ロ) (四) (三) (三) (三)

I.N. & P.O. Spring 2006