
T–79.4201 Search Problems and Algorithms

3. Search Spaces and Objective Functions. Complete vs. Local
Search

3.1. Search Spaces and Objective Functions

An instance I of a combinatorial search or optimisation problem
Π determines a search space X of candidate solutions.

The computational difficulty in such problems arises from the
fact that X is typically exponential in the size of I (= HUGE).

E.g. SAT:
Instance F = propositional formula on n variables {x1, . . . ,xn}.
Search space X = all truth assignments t : {x1, . . . ,xn}→ {0,1}.
Goal: find t ∈ X that makes F true.

Size of X = 2n points (0/1-vectors).

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Search Spaces and Objective Functions (II)

Note that if SAT formulas are required to be in conjunctive
normal form (as in e.g. 3-SAT), then it can also be viewed as an
optimisation problem:

OPT-3-SAT:
Instance F = family of m 3-clauses on n variables {x1, . . . ,xn}.
Search space X = all truth assignments t : {x1, . . . ,xn}→ {0,1}.
Objective (cost) function: c(t) = number of clauses not satisfied by
t.
Goal: minimise c(t).

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Search Spaces and Objective Functions (III)

OPT-TSP:
Instance: An n×n matrix D of distances dij between n “cities”.
Search space: X = all permutations (“tours”) π of {1, . . . ,n}.
Cost function: d(π) = ∑n−1

i=1 dπ(i)π(i+1) +dπ(n)π(1).
Goal: minimise d(π).

Note: Here |X | = n!. (More precisely: |X | = (n−1)!/2, if the
starting points and orientations of tours are ignored.)

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Search Spaces and Objective Functions (IV)

OPT-SG (or SPIN GLASS GROUND STATE):
Instance: An n×n matrix C of “coupling constants” cij between n
“spins” and an n-vector h (“external field”).
Search space: X = all “spin configurations” σ ∈ {−1,1}n.
Cost function (“Hamiltonian”):

H(σ) = −∑
〈i,j〉

cijσiσj −∑
i

hiσi .

Goal: minimise H(σ).

Here again |X | = 2n.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

3.2 Complete Search Methods

Backtrack Search

Bactrack search is a systematic method to search for a
satisfying, or an optimal solution x in a search space X .

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

function backtrack(I:instance; x :partialsol):
if x is a complete solution then

return x
else

for all extensions e1, . . .ek to x do
x ′ ← backtrack(I,x ⊕ei);
if x ′ is a complete solution then return x ′

end for;
return fail

end if.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Backtrack Search (II)

For instance, in the case of SAT, each partial truth assignment
t : {x1, . . . ,xi}→ {0,1} has two possible extension e0 and e1: one
assigns value 0 to variable xi+1 and the other assigns value 1.

In the case of TSP, the partial solutions could be nonrepeating
sequences of cities (initial segments of tours), and the
extensions could be choices of next city. (Also other
arrangements are possible).

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Backtrack Search in Games

A backtrack search generates a search tree of increasingly
complete partial solutions.

Let us illustrate this in the case of evaluating position values in
a game of 3×3 noughts-and-crosses.

Associate to each incomplete position t in the game its payoff
value for player X :

payoff(t) =

1 if X has a winning strategy from t,

−1 if O has a winning strategy from t,

0 if neither has a winning strategy from t.

The complete annotated search, or game tree of this game is
illustrated on the next slide.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

0 0 0

0

X
X X

X
X

X

X X X
X

X
X X

X X
X
X

X

O
O
O

O
OO
O O O

O
O O

O

-11 0

1

Turn: Position:

X

O

X

O

.

.

..

-1 00 1

X

O

0 0 1

....

X
XX

X X
X X

X X X
X
X

X
X

X

X

X
X
X

X X

X
X

X X
X

X
XX

X X

O O

O
O

O O O
O

O O
O

O

O
O O

O

O
O O

O
O
O

O

OO O
O

O

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

The Minimax Rule

The payoff values for all positions can be computed by
augmenting a backtrack search of the game tree with
computations according to the following minimax rules:

Position type Payoff value
final (complete) can be determined directly
X moves payoff = max {payoff values of immed. extensions}
O moves payoff = min {payoff values of immed. extensions}

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Bounded Depth Search

Game trees in realistic games are usually evaluated only to
some predetermined lookup depth k , at which some heuristic
evaluation function eval(t) is applied to estimate the payoff values
of the incomplete positions t.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

function payoff (t:position; k :depth; m:{MIN, MAX}):
if k = 0 or t is a final position then

return eval(t)
else

if m = MAX then v ← −∞ else v ← ∞;
for all t ’s extensions s do

if m = MAX then
v ← max(v , payoff(s, k −1, MIN))

else
v ← min(v , payoff(s, k −1, MAX))

end if;
return v

end if.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Alpha-Beta Pruning

The size of a search tree can often be considerably reduced by
eliminating branches that cannot improve an already known
solution. In the case of game trees this process is known as
alpha-beta pruning.

During the backtrack search of the game tree, maintain at each
node t an intermediate payoff value, which for MIN nodes is an
upper bound on the eventual true payoff value, and for MAX
nodes a lower bound. Then when it is clear that no further
search below a given node t can improve the payoff value of its
father, the remaining subtrees of t cab be pruned. (See next
slide.)

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

MIN

MAX ...

< 10

10

15

Can be left unsearched,

since it is already known that

p

t > 15

payoff(p) < 10 and payoff(t) > 15.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

function payoffαβ (t, k , m, pv); pv = father’s intermediate payoff
if k = 0 or t is a final position then return eval(t)
else

if m = MAX then v ← −∞ else v ← ∞;
for all t ’s extensions s do

if m = MAX then
v ← max(v , payoffαβ(s, k −1, MIN, v));
if v ≥ pv then return v

else
v ← min(v , payoffαβ (s, k −1, MAX, v));
if v ≤ pv then return v

end if;
return v

end if.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Branch-and-Bound Search

Similar pruning techniques can greatly improve the efficiency of
backtrack search in optimisation problems.

Consider e.g. the TSP problem and choose:

Partial solution: A set of edges (links) that have been decided to
either include or exclude from the complete solution tour.
Bounding heuristic: Let the TSP instance under consideration be
given by distance matrix D = dij . Then the following inequality
holds for any complete tour π:

d(π) =
1

2 ∑
i

{(dij +djk) | at city j tour π uses links ij and jk}

≥
1

2 ∑
j

min
i,k

(dij +djk).

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

This estimate can be used to lower bound the length of tours
achievable from any given partial solution, and prune the
search tree correspondingly.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Branch-and-Bound Search (II)

Consider the following small TSP instance:

d

c

ba

e

6

56

8

47

2

3

3

4

Using the above lower-bounding heuristic, the search tree for
the minimum tour on this instance can be pruned as presented
on the following slide.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

acebdaabecdaabceda
tour tour tourtour

acbeda

be bebc

no constr.

ab ab

ac ac

bc

C = 19C = 21C = 23 C = 23

ac
ad
ae

ad
ae ae

ad ad
ae

ad
ae

ac
ad

aeC > 18

C > 18 C > 18,5

C > 18,5

C > 17,5

C > 17,5

C > 18,5

C > 23 C > 23,5

C > 20,5 C > 21

MINIMUM

1
2 ((2+3)+(3+3)+(4+4)+(2+5)+(3+6))

a cb d e

prune

prune

pruneprune

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

3.3 Local Search

For realistic problems, complete search trees can be extremely
large and difficult to prune effectively. It may often be more
useful to get a reasonably good solution fast, rather than the
globally optimal one after a long wait. In such cases, local
search methods provide an interesting alternative.

Assume that the search space X has some neighbourhood
structure N, whereby for each solution x ∈ X , a set of
“structurally close” solutions N(x) ⊆ X can be easily generated
from x by local transformations.

For instance, in the case of OPT-SAT one could have:
N(t) =
{truth assignments t ′ that differ from t at exactly one variable},
and in the case of OPT-SG:
N(σ) =
{spin configurations σ′ that differ from σ at exactly one spin}.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Deterministic Local Search

The simple deterministic local search method works by iteratively
improving a given solution by neighbourhood transformations,
as long as possible:

function det_LS (X , N, c):
choose arbitrary initial solution x ∈ X ;
repeat

find some x ′ ∈ N(x) such that c(x ′) < c(x);
x ← x ′

until no such x ′ can be found;
return x .

loc.
opt.

global
optimum

local
optimum

loc.
opt.

cost of
solution

initial soln.

local transf.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Local Search for TSP

Local search based on Lin-Kernighan neighbourhoods (figure
below) has been experimentally shown to produce quite good
results for the TSP. In particular, search based on the 3-opt
neighbourhoods consistently produces tours only a few %
longer than optimum.

Tour transformations defining the Lin-Kernighan 2-opt and 3-opt
neighbourhoods:

� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �
� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �
� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �a b

d e

���� ����
��		

��

���
� �� ���

� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �
���

���
���

���
���

���
� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �
f

e

a
b

d

c

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

A 2-Opt Descent to Local Optimum for TSP

��������
����

� �� �� �������� !!
""## $$%%

&&''

(()) **++

,,-- ..//
00112 22 233

4455

6677 8899
::;;<<<===

> >> >??2

6

7

6 5

4

3

3

4
4

56

2
6

4 4

8

7

2

3

2

3

3

4

6

8

3

Local optimum

(in fact also global)

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

3.4 Simulated Annealing

Local (nonglobal) minima are obviously a problem for
deterministic local search, and many heuristics have been
developed for escaping from them.

One of the most widely used is simulated annealing (Kirkpatrick,
Gelatt & Vecchi 1983, Černy 1985), which introduces a
mechanism for allowing also cost-increasing moves in a
controlled stochastic way.

The amount of stochasticity is regulated by a computational
temperature parameter T , whose value is during the search
decreased from some large initial value Tinit À 0 to some final
value Tfinal ≈ 0. A proposed move from a solution x to a worse
solution x ′ is accepted with probability e−∆c/T , where ∆c > 0 is
the cost difference of the solutions.

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

function SA(X , N, c):
T ← Tinit ;
x ← xinit ;
while T > Tfinal do

L ← sweep(T);
for L times do

choose x ′ ∈ N(x) uniformly at random;
∆c ← c(x ′)− c(x);
if ∆c ≤ 0 then x ← x ′ else

choose r ∈ [0,1) uniformly at random;
if r ≤ exp(−∆c/T) then x ← x ′;

end for;
T ← lower(T)

end while;
return x .

I.N. & P.O. Spring 2006

T–79.4201 Search Problems and Algorithms

Cooling Schedules

An important question in applying simulated annealing is how
to choose appropriate functions lower(T) and sweep(T), i.e.
what is a good “cooling schedule” 〈T0,L0〉,〈T1,L1〉, . . .

There are theoretical results guaranteeing that if the cooling is
“sufficiently slow”, then the algorithm almost surely converges
to globally optimal solutions. Unfortunately these theoretical
cooling schedules are astronomically slow.

In practice, it is customary to just start from some “high”
temperature T0, and after each “sufficiently long” sweep L
decrease the temperature by some “cooling factor”
α ≈ 0.8 . . .0.99, i.e. to set Tk+1 = αTk .

Theoretically this is much too fast, but often seems to work well
enough. No one really understands why.

I.N. & P.O. Spring 2006

