1. Solve the linear relaxation of the following integer program using the geometric view where the optimal value is found in a "corner point" of the polytope defined by the inequations.

$$
\begin{aligned}
& \min -x_{1}-x_{2} \quad \text { s.t. } \\
& 2 x_{1}+5 x_{2} \leq 16 \\
& 6 x_{1}+5 x_{2} \leq 30 \\
& x_{1} \geq 0 \\
& x_{2} \geq 0 \\
& x_{1}, x_{2} \text { integers }
\end{aligned}
$$

2. Solve the problem above by the branch and bound algorithm using linear relaxation. Select always x_{1} as the branching variable when both x_{1} and x_{2} are fractional.
3. Give the following linear program in the standard form in a Simplex tableau in the diagonalized form corresponding to a basic feasible solution.

$$
\begin{aligned}
& \min -5 x_{1}-4 x_{2} \quad \text { s.t. } \\
& 6 x_{1}+4 x_{2} \leq 24 \\
& x_{1}+2 x_{2} \leq 6 \\
& x_{1}-x_{2} \geq-1 \\
& x_{2} \leq 2 \\
& x_{1} \geq 0 \\
& x_{2} \geq 0
\end{aligned}
$$

4. Solve the problem above using the Simplex algorithm.
