1. Give the following linear program in the standard form:

$$
\begin{aligned}
& \max 2 x_{1}-3 x_{2}+x_{3} \quad \text { s.t. } \\
& x_{1}+x_{2} \geq 2 x_{3} \\
& 3 x_{2}-4 x_{3} \leq x_{1} \\
& x_{1} \geq 0 \\
& x_{2} \geq 0
\end{aligned}
$$

2. Express the condition "if $y=1$, then $x_{1}+\cdots+x_{n} \geq 100$ " as a linear constraint, where y is an integer variable such that $0 \leq y \leq 1$ and $x_{i} \geq 0$. Hint: employ a sufficiently large constant M.
3. Represent the constraints

$$
\begin{aligned}
& \frac{x}{x-y} \leq 2 \\
& 2 x-y \leq-1 \\
& x \geq 0 \\
& y \geq 0
\end{aligned}
$$

using purely linear constraints.
4. Represent the following constraints as linear constraints.
(i) $\left|a_{1} x_{1}+\cdots+a_{n} x_{n}\right|=0$.
(ii) $\left|a_{1} x_{1}+\cdots+a_{n} x_{n}\right| \leq b$.
5. Represent the constraint $|x| \geq b$ as linear constraints where x is unrestricted in sign. Hint: employ an additional binary integer variable and a sufficiently large constant M.

