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12 Complexity of Search

I The “No Free Lunch” Theorem

I Combinatorial Phase Transitions

I Complexity of Local Search
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12.1 The “No Free Lunch” Theorem

I Wolpert & Macready 1997
I Basic content: All optimisation methods are equally good,

when averaged over uniform distribution of objective
functions.

I Alternative view: Any nontrivial optimisation method must
be based on assumptions about the space of relevant
objective functions. [However this is very difficult to make
explicit and hardly any results in this direction exist.]

I Corollary: one cannot say, unqualified, that ACO methods
are “better” than GA’s, or that Simulated Annealing is
“better” than simple Iterated Local Search. [Moreover as of
now there are no results characterising some nontrivial
class of functions F on which some interesting method A
would have an advantage over, say, random sampling of
the search space.]
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The NFL theorem: definitions (1/4)

I Consider family F of all possible objective functions
mapping finite search space X to finite value space Y .

I A sample d from the search space is an ordered sequence
of distinct points from X , together with some associated
cost values from Y :

d = {(dx(1),dy(1)), . . . ,(dx(m),dy(m))}.

Here m is the size of the sample. A sample of size m is also
denoted by dm, and its projections to just the x- and
y-values by dx

m and dy
m, respectively.

I The set of all samples of size m is thus Dm = (X ×Y )m,
and the set of all samples of arbitrary size is D = ∪mDm.
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The NFL theorem: definitions (2/4)

I An algorithm is any function a mapping samples to
new points in the search space. Thus:

a : D → X , a(d) /∈ dx .

I Note 1: The assumption a(d) /∈ dx is made to simplify the
performance comparison of algorithms; i.e. one only takes
into account distinct function evaluations. Not all algorithms
naturally adhere to this constraint (e.g. SA, ILS), but
without it analysis is difficult.

I Note 2: The algorithm may in general be stochastic, i.e. a
given sample d ∈ D may determine only a distribution over
the points x ∈ X −dx .
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The NFL theorem: definitions (3/4)

I A performance measure is any mapping Φ from cost value
sequences to real numbers (e.g. minimum, maximum,
average). Thus:

Φ : Y ∗ → R,

where Y ∗ = ∪mY
m:
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The NFL theorem: definitions (4/4)

I Finally, denote by P(dy
m | f ,m,a) the probability distribution

of value samples of size m obtained by using a (generally
stochastic) algorithm a to sample a (typically unknown)
function f ∈ F .

I More precisely, such a sample is obtained by starting from
some a-dependent search point dx(1), querying f for the
value dy(1) = f (dx(1)), using a to determine search point
dx(2) based on (dx(1),dy(1)), etc., up to search point
dx(m) and the associated value dy(m) = f (dx(m)). The
value sample dy

m is then obtained by projecting the full
sample dm to just the y-coordinates.
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The NFL theorem: statement

Theorem

[NFL] For any value sequence dy
m and any two algorithms a1

and a2:

∑
f∈F

P(dy
m | f ,m,a1) = ∑

f∈F

P(dy
m | f ,m,a2).
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The NFL theorem: corollaries

Corollary

[1] Assume the uniform distribution of functions over F ,
P(f ) = 1/|F | = |Y |−|X |. Then for any value sequence dy

m ∈ Y m

and any two algorithms a1 and a2:

P(dy
m | m,a1) = P(dy

m | m,a2).

Corollary

[2] Assume the uniform distribution of functions over F . Then
the expected value of any performance measure Φ over value
samples of size m,

E(Φ(dy
m) | m,a) = ∑

dy
m∈Y m

Φ(dy
m)P(dy

m | m,a),

is independent of the algorithm a used.
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12.2 Combinatorial Phase Transitions

I “Where the Really Hard Problems Are” (Cheeseman et al.
1991)

I Many NP-complete problems can be solved in polynomial
time “on average” or “with high probability” for
reasonable-looking distributions of problem instances. E.g.
Satisfiability in time O (n2) (Goldberg et al. 1982), Graph
Colouring in time O (n2) (Grimmett & McDiarmid 1975,
Turner 1984).

I Where, then, are the (presumably) exponentially hard
instances of these problems located? Could one tell ahead
of time whether a given instance is likely to be hard?

I Early studies: Yu & Anderson (1985), Hubermann & Hogg
(1987), Cheeseman, Kanefsky & Taylor (1991), Mitchell,
Selman & Levesque (1992), Kirkpatrick & Selman (1994),
etc.
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Hard instances for 3-SAT (1/4)

I Mitchell, Selman & Levesque, AAAI-92

I Experiments on the behaviour of the DPLL procedure on
randomly generated 3-cnf Boolean formulas.

I Distribution of test formulas:
I n = number of variables
I m = αn randomly generated clauses of 3 literals, 2 ≤ α ≤ 8

I For sets of 500 formulas with n = 20/40/50 and various α,
Mitchell et al. plotted the median number of recursive
DPLL calls required for solution.
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Hard instances for 3-SAT (2/4)

Results:

I A distinct peak in median running times at about
clauses-to-variables ratio α ≈ 4.5.

I Peak gets more pronounced for increasing n ⇒
well-defined “delta” distribution for infinite n?
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Hard instances for 3-SAT (3/4)

I The runtime peak seems to be located near the point
where 50% of formulas are satisfiable.

I The peak seems to be caused by relatively short
unsatisfiable formulas.

Question: Is the connection of the running time peak and the
satifiability threshold a characteristic of the DPLL algorithm, or
a (more or less) algorithm independent “universal” feature?
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The satisfiability transition (1/2)

Mitchell et al. (1992): The “50% satisfiable” point or
“satisfiability threshold” for 3-SAT seems to be located at
α ≈ 4.25 for large n.
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The satisfiability transition (2/2)

Kirkpatrick & Selman (1994):

I Similar experiments as above for k-SAT, k = 2, . . . ,6, 10000
formulas per data point.

I The “satisfiability threshold” αc shifts quickly to larger
values of α for increasing k .
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Statistical mechanics of k-SAT (1/4)
Kirkpatrick & Selman, Science 1994

A “spin glass” model of a k-cnf formula:

I variables xi ∼ spins with states ±1

I clauses c ∼ k-wise interactions between spins

I truth assignment σ ∼ state of spin system

I Hamiltonian H(σ) ∼ number of clauses unsatisfied by σ
I αc ∼ critical “interaction density” point for “phase

transition” from “satisfiable phase” to “unsatisfiable phase”
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Statistical mechanics of k-SAT (2/4)
Estimates of αc for various values of k via “annealing
approximation”, “replica theory”, and observation:

k αann αrep αobs

2 2.41 1.38 1.0
3 5.19 4.25 4.17±0.03
4 10.74 9.58 9.75±0.05
5 21.83 20.6 20.9±0.1
6 44.01 42.8 43.2±0.2
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Statistical mechanics of k-SAT (3/4)
The “annealing approximation” means simply assuming that the
different clauses are satisfied independently. This leads to the
following estimate:

I Probability that given clause c is satisfied by random σ:
pk = 1−2−k .

I Probability that random σ satisfies all m = αn clauses
assuming independence: pαn

k .
I E[number of satisfying assignments] = 2npαn

k , Sn
k (α).

I For large n, Sn
k (α) falls rapidly from 2n to 0 near a critical

value α = αc. Where is αc?
I One approach: solve for Sn

k (α) = 1.

Sn
k (α) = 1 ⇔ 2pα

k = 1

⇔ α = −
1

log2 pk
= −

ln2

ln(1−2−k)
≈

ln2

2−k
= (ln2) ·2k
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Statistical mechanics of k-SAT (4/4)
It is in fact known that:

I A sharp satisfiability threshold αc exists for all k ≥ 2
(Friedgut 1999).

I For k = 2, αc = 1 (Goerdt 1982, Chvátal & Reed 1982).
Note that 2-SAT ∈ P.

I For k = 3, 3.145 < αc < 4.506 (lower bound due to
Achlioptas 2000, upper bound to Dubois et al. 1999).

I Current best empirical estimate for k = 3: αc ≈ 4.267
(Braunstein et al. 2002).

I For large k , αc ∼ (ln2) ·2k (Achlioptas & Moore 2002).
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12.3 Complexity of Local Search

I Good experiences for 3-SAT in the satisfiable region
α < αc: e.g. GSAT (Selman et al. 1992), WalkSAT (Selman
et al. 1996).

I Focusing the search on unsatisfied clauses seems to be an
important technique: in the (unsystematic) experiments in
Selman et al. (1996), WalkSAT (focused) outperforms
NoisyGSAT (unfocused) by several orders of magnitude.
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Dynamics of local search

A WalkSAT run with p = 1 (“focused random walk”) on a
randomly generated 3-SAT instance, α = 3, n = 500: evolution
in the fraction of unsatisfied clauses (Semerjian & Monasson
2003).
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Some recent results and conjectures

I Barthel, Hartmann & Weigt (2003), Semerjian & Monasson
(2003): WalkSAT with p = 1 has a “dynamical phase
transition” at αdyn ≈ 2.7−2.8. When α < αdyn, satisfying
assignments are found in linear time per variable (i.e. in a
total of cn “flips”), when α > αdyn exponential time is
required.

I Explanation: for α > αdyn the search equilibrates at a
nonzero energy level, and can only escape to a ground
state through a large enough random fluctuation.

I Conjecture: all local search algorithms will have difficulties
beyond the so called “clustering transition” at
α ≈ 3.92−3.93 (Mézard, Monasson, Weigt et al.)
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Some WalkSAT experiments
For p > 1, the αdyn barrier for linear solution times can be broken
(Aurell & Kirkpatrick 2004; Seitz, Alava & Orponen 2005).
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Normalised (flips/n) solution times for finding satisfying
assignments using WalkSAT, α = 3.8 . . .4.3.
Left: complete data; right: medians and quartiles.

Data suggest linear solution times for α À αdyn ≈ 2.7.
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WalkSAT linear scaling
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WalkSAT optimal noise level?
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WalkSAT sensitivity to noise
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Cumulative solution time distributions for WalkSAT at α = 4.20
with p = 0.55 and p = 0.57.
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RRT applied to random 3-SAT

I Similar results as for WalkSAT are obtained with the
Record-to-Record Travel algorithm.

I In applying RRT to SAT, E(s) = number of clauses
unsatisfied by truth assignment s. Single-variable flip
neighbourhoods.

I Focusing: flipped variables chosen from unsatisfied
clauses. (Precisely: one unsatisfied clause is chosen at
random, and from there a variable at random.) ⇒ FRRT =
focused RRT.
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FRRT experiments (3-SAT)
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FRRT linear scaling (1/2)
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FRRT linear scaling (2/2)
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Focused search as a contact process
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Focused search as a contact process
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Focused search as a contact process
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Focused search as a contact process
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