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11 Novel Methods

I Ant Algorithms

I Message Passing Methods
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11.1 Ant Algorithms

I Dorigo et al. (1991 onwards), Hoos & Stützle (1997), . . .

I Inspired by experiment of real ants selecting the shorter of
two paths (Goss et al. 1989):

NEST FOOD

I Method: each ant leaves a pheromone trail along its path;
ants make probabilistic choice of path biased by the
amount of pheromone on the ground; ants travel faster
along the shorter path, hence it gets a differential
advantage on the amount of pheromone deposited.
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Ant Colony Optimisation (ACO)

I Formulate given optimisation task as a path finding
problem from source s to some set of valid destinations
t1, . . . , tn (cf. the A∗ algorithm).

I Have agents (“ants”) search (in serial or parallel) for
candidate paths, where local choices among edges leading
from node i to neighbours j ∈ Ni are made probabilistically
according to the local “pheromone distribution” τij :

pij =
τij

∑j∈Ni
τij

.

I After an agent has found a complete path π from s to one
of the tk , “reward” it by an amount of pheromone
proportional to the quality of the path, 4τ ∝ q(π).
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I Have each agent distribute its pheromone reward 4τ
among edges (i, j) on its path π: either as τij ← τij +4τ or
as τij ← τij +4τ/len(π).

I Between two iterations of the algorithm, have the
pheromone levels “evaporate” at a constant rate (1−ρ):

τij ← (1−ρ)τij .
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ACO motivation

I Local choices leading to several good global results get
reinforced by pheromone accumulation.

I Evaporation of pheromone maintains diversity of search.
(I.e. hopefully prevents it getting stuck at bad local minima.)

I Good aspects of the method: can be distributed; adapts
automatically to online changes in the quality function q(π).

I Good results claimed for Travelling Salesman Problem,
Quadratic Assignment, Vehicle Routing, Adaptive Network
Routing etc.
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ACO variants

Several modifications proposed in the literature:

I To exploit best solutions, allow only best agent of each
iteration to distribute pheromone.

I To maintain diversity, set lower and upper limits on the
edge pheromone levels.

I To speed up discovery of good paths, run some local
optimisation algorithm on the paths found by the agents.

I Etc.
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An ACO algorithm for the TSP (1/2)

I Dorigo et al. (1991)

I At the start of each iteration, m ants are positioned at
random start cities.

I Each ant constructs probabilistically a Hamiltonian tour π
on the graph, biased by the existing pheromone levels.
(NB. the ants need to remember and exclude the cities
they have visited during the search.)

I In most variations of the algorithm, the tours π are still
locally optimised using e.g. the Lin-Kernighan 3-opt
procedure.

I The pheromone award for a tour π of length d(π) is
4τ = 1/d(π), and this is added to each edge of the tour:
τij ← τij +1/d(π).
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An ACO algorithm for the TSP (2/2)

I The local choice of moving from city i to city j is biased
according to weights:

aij =
τα

ij (1/dij)
β

∑j∈Ni
τα

ij (1/dij)β,

where α,β ≥ 0 are parameters controlling the balance
between the current strength of the pheromone trail τij vs.
the actual intercity distance dij .

I Thus, the local choice distribution at city i is:

pij =
aij

∑j∈N ′
i

aij
,

where N ′
i is the set of permissible neighbours of i after

cities visited earlier in the tour have been excluded.
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11.2 Message Passing Methods

Belief Propagation (or the Sum-Product Algorithm):

I Pearl (1986) and Lauritzen & Spiegelhalter (1986).

I Originally developed for probabilistic inference in graphical
models; specifically for computing marginal distributions of
free variables conditioned on determined ones.

I Recently generalised to many other applications by
Kschischang et al. (2001) and others.

I Unifies many other, independently developed important
algorithms: Expectation-Maximisation (statistics), Viterbi
and “Turbo” decoding (coding theory), Kalman filters
(signal processing), etc.

I Presently great interest as a search heuristic in constraint
satisfaction.
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Survey Propagation

I Braunstein, Mézard & Zecchina (2005).

I Refinement of Belief Propagation to dealing with
“clustered” solution spaces.

I Based on statistical mechanics ideas of the structure of
configuration spaces near a “critical point”.

I Remarkable success in solving very large “hard” randomly
generated Satisfiability instances.

I Success on structured problem instances not so clear.
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Belief propagation

I Method is applicable to any constraint satisfaction problem,
but for simplicity let us focus on Satisfiability.

I Consider cnf formula F determined by variables x1, . . . ,xn

and clauses C1, . . . ,Cm. Represent truth values as
ξ ∈ {0,1}.

I Denote the set of satisfying truth assignments for F as

S = {x ∈ {0,1}n | C1(x) = · · · = Cm(x) = 1}.

I We aim to estimate for each variable xi and truth value
ξ ∈ {0,1} the bias of xi towards ξ in S :

βi(ξ) = Pr
x∈S

(xi = ξ).

I If for some xi and ξ, βi(ξ) ≈ 1, then xi is a “backbone”
variable for the solution space, i.e. most solutions
x ∈ S share the feature that xi = ξ.
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Bias-guided search

If the biases βi could be computed effectively, they could be
used e.g. as a heuristic to guide backtrack search:

function BPSearch(F : cnf):
if F has no free variables then return val(F) ∈ {0,1}
else

β̄ ← BPSurvey(F );
choose variable xi for which βi(ξ) = max;
val ← BPSearch(F [xi ← ξ]);
if val = 1 then return 1
else return BPSearch(F [xi ← (1−ξ)]);

end if.

Alternately, the bias values could be used to determine variable
flip probabilities in some local search method etc.
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Message passing on factor graphs

I The problem of course is that the biases are in general
difficult to compute. (It is already NP-complete to
determine whether S 6= /0 in the first place.)

I Thus, the BP survey algorithm aims at just estimating the
biases by iterated local computations (“message passing”)
on the factor graph structure determined by formula F .

I The factor graph of F is a bipartite graph with nodes 1,2, . . .
corresponding to the variables and nodes a,b, . . .
corresponding to the clauses. An edge connects nodes
i and u if and only if variable xi occurs in clause Cu (either
as a positive or a negative literal).
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A factor graph

Factor graph representation of formula
F = (x1 ∨ x2)∧ (x̄2 ∨ x3)∧ (x̄1 ∨ x̄3):

c

1 2 3

a b
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Belief messages

I The BP survey algorithm works by iteratively exchanging
“belief messages” between interconnected variable and
clause nodes.

I The variable-to-clause messages µi→a(ξ) represent the
“belief” (approximate probability) that variable xi would
have value ξ in a satisfying assignment, if it was not
influenced by clause Ca.

I The clause-to-variable messages µa→i(ξ) represent the
belief that clause Ca can be satisfied, if variable xi is
assigned value ξ.
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Propagation rules

I Initially, all the variable-to-clause message are initialised to
µi→a(ξ) = 1/2.

I Then beliefs are propagated in the network according to
the following update rules, until no more changes occur (a
fixpoint of the equations is reached):

µi→a(ξ) =

∏
b∈Ni\a

µb→i(ξ)

∏
b∈Ni\a

µb→i(ξ)+ ∏
b∈Ni\a

µb→i(1−ξ)

µa→i(ξ) = ∑
x:xi=ξ

Ca(x) · ∏
j∈Na\i

µj→a(xj)

(Here notation Nu \ v means the neighbourhood of node u,
excluding node v .)

I Eventually the variable biases are estimated as
βi(ξ) ≈ µi→a(ξ).
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Belief propagation: limitations (1/2)

I The belief update rules entail strong independence
assumptions about the variables. E.g. in the update rule for
µa→i(ξ) it is assumed that the probability
Prx∈S (xj = ξj , j ∈ Na \ i) factorises as ∏j∈Na\i µj→a(xj). Thus
the estimated variable biases may not be the correct ones.

I Furthermore, the message propagation may never
converge to stable message values. However it is known
that if the factor graph is a tree (contains no loops), then a
stable state is reached in a single two-way pass from leaf
variable nodes to a chosen root node and back.
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Belief propagation: limitations (2/2)

I Even if the correct bias values βi(ξ) = Prx∈S (xi = ξ) were
known, these may be noninformative in the case when the
solution space is “clustered”.

I For instance, assume there are cn, c > 0, “backbone”
variables whose different assignments lead to different
types of solution families. Then it may be the case that all
βi ≈ 1/2 also for these variables, even though for any
solution cluster they are in fact highly constrained.

I The more advanced Survey Propagation algorithm aims to
address this problem.
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