
T–79.4201 Search Problems and Algorithms

10. Genetic Algorithms

I General-purpose “black-box” optimisation method
proposed by J. Holland (1975) and K. DeJong (1975).

I Method has attracted lots of interest, but theory is still
incomplete and the empirical results inconclusive.

I Advantages: general-purpose, parallelisable, adapts
incrementally to changing cost functions (“on-line
optimisation”).

I Disadvantages: typically very slow – should be used with
moderation for simple serial optimisation of a stable, easily
evaluated cost function.

I Some claim that GA’s typically require fewer function
evaluations to reach comparable results as e.g. simulated
annealing. Thus the method may be good when function
evaluations are expensive (e.g. require some acutal
physical measurement).

I.N. & P.O. Autumn 2006

T–79.4201 Search Problems and Algorithms

10.1 The Basic Algorithm

I We consider the so called “simple genetic algorithm”; also
many other variations exist.

I Assume we wish to maximise a cost function c defined on
n-bit binary strings:

c : {0,1}n → R.

Other types of domains must be encoded into binary
strings, which is a nontrivial problem. (Examples later.)

I View each of the candidate solutions s ∈ {0,1}n as an
individual or chromosome.

I At each stage (generation) t the algorithm maintains a
population of individuals pt = (s1, . . . ,sm).

I.N. & P.O. Autumn 2006

T–79.4201 Search Problems and Algorithms

Three operations defined on populations:

I selection σ(p) (“survival of the fittest”)
I recombination ρ(p) (“mating”, “crossover”)
I mutation µ(p)

The Simple Genetic Algorithm:

function SGA(σ, ρ, µ):
p ← random initial population;
while p “not converged” do

p′ ← σ(p);
p′′ ← ρ(p′);
p ← µ(p′′)

end while ;
return p (or “fittest individual” in p).

end .

I.N. & P.O. Autumn 2006

T–79.4201 Search Problems and Algorithms

Selection (1/3)

Denote Ω = {0,1}n. The selection operator σ : Ωm → Ωm maps
populations probabilistically: given an individual s ∈ p, the
expected number of copies of s in σ(p) is proportional to the
fitness of s in p. This is a function of the cost of s compared to
the costs of other s′ ∈ p.

I.N. & P.O. Autumn 2006

T–79.4201 Search Problems and Algorithms

Selection (2/3)
Some possible fitness functions:

I Relative cost (⇒ “canonical GA”):

f (s) =
c(s)

1

m ∑
s′∈p

c(s′)
,

c(s)

c̄
.

I Relative rank:

f (s) =
r(s)

1

m ∑
s′∈p

r(s′)
=

2

m +1
· r(s),

where r(s) is the rank of individual s in a worst-to-best
ordering of all s′ ∈ p.

I.N. & P.O. Autumn 2006

T–79.4201 Search Problems and Algorithms

Selection (3/3)

Once the fitness of individuals has been evaluated, selection
can be performed in different ways:

I Roulette-wheel selection (“stochastic sampling with
replacement”):

I Assign to each individual s ∈ p a probability to be selected in
proportion to its fitness value f (s). Select m individuals according
to this distribution.

I Pictorially: Divide a roulette wheel into m sectors of width
proportional to f (s1), . . . , f (sm). Spin the wheel m times.

I Remainder stochastic sampling:
I For each s ∈ p, select deterministically as many copies of s as

indicated by the integer part of f (s). After this, perform stochastic
sampling on the fractional parts of the f (s).

I Pictorially: Divide a fixed disk into m sectors of width proportional
to f (s1), . . . , f (sm). Place an outer wheel around the disk, with m
equally-spaced pointers. Spin the outer wheel once.

I.N. & P.O. Autumn 2006

T–79.4201 Search Problems and Algorithms

Recombination (1/2)

I Given a population p, choose two random individuals
s,s′ ∈ p. With probability pρ, apply a crossover operator
ρ(s,s′) to produce two new offspring individuals t, t ′ that
replace s,s′ in the population.

I Repeat the operation m/2 times, so that on average each
individual participates once. Denote the total effect on the
population as p′ = ρ(p).

I Practical implementation: choose pρ
2 ·m random pairs from

p and apply crossover deterministically.

I Typically pρ ≈ 0.7 . . .0.9.

I.N. & P.O. Autumn 2006

T–79.4201 Search Problems and Algorithms

Recombination (2/2)
Possible crossover operators:

I 1-point crossover:

0 1 1 0

1 1 0 1 0 0 1 1 0 0 1

1 0 1 1 0 1 1

0 1 1 0

1 1 0 1

0 0 1 1 0 0 1

1 0 1 1 0 1 1

I 2-point crossover:

1 0 1 1
0 1 0 0 11 1

0 11 0 1 0 1
1 11 0 1 0 1
0 10 1 0 0 11 0 1 1

1 0 0 1 1 0 0 1

I uniform crossover:
0 11 1 0 1 0 0 1 1 0 0 1

0 1 1 0 1 0 1 1 0 1 1 1 0 11 0 0 11 10 1

1 0 11 0 0 10 1

I.N. & P.O. Autumn 2006

T–79.4201 Search Problems and Algorithms

Mutation

I Given population p, consider each bit of each individual
and flip it with some small probability pµ. Denote the total
effect on the population as p′ = µ(p).

I Typically, pµ ≈ 0.001 . . .0.01. Apparently good choice:
pµ = 1/n for n-bit strings.

I Theoretically mutation is disruptive. Recombination and
selection should take care of optimisation; mutation is
needed only to (re)introduce “lost alleles”, alternative
values for bits that have the bits that have the same value
in all current individuals.

I In practice mutation + selection = local search. Mutation,
even with quite high values of pµ, can be efficient and is
often more important than recombination.

I.N. & P.O. Autumn 2006

T–79.4201 Search Problems and Algorithms

10.2 Analysis of GA’s

Hyperplane sampling (1/4)

I A heuristic view of how a genetic algorithm works.
I A hyperplane (actually subcube) is a subset of Ω = {0,1}n,

where the values of some bits are fixed and other are free
to vary. A hyperplane may be represented by a schema
H ∈ {0,1,∗}n.

I E.g. schema ’0∗1∗∗’ represents the 3-dimensional
hyperplane (subcube) of {0,1}5 where bit 1 is fixed to 0, bit
3 is fixed to 1, and bits 2, 4, and 5 vary.

I Individual s ∈ {0,1}n samples hyperplane H, or matches the
corresponding schema if the fixed bits of H match the
corresponding bits in s. (Denoted s ∈ H.)

I Note: given individual generally samples many hyperplanes
simultaneously, e.g. individual ’101’ samples ’10∗’, ’1∗1’,
etc.

I.N. & P.O. Autumn 2006

T–79.4201 Search Problems and Algorithms

Hyperplane sampling (2/4)

I order of hyperplane H:

o(H) = number of fixed bits in H

= n−dim H

I average cost of hyperplane H:

c(H) =
1

2n−o(H) ∑
s∈H

c(s)

I m(H,p) =
number of individuals in population p that sample hyperplane H.

I average fitness of hyperplane H in population p:

f (H,p) =
1

m(H,p) ∑
s∈H∩p

f (s,p)

Heuristic claim: selection drives the search towards hyperplanes
of higher average cost (quality).

I.N. & P.O. Autumn 2006

T–79.4201 Search Problems and Algorithms

Hyperplane sampling (3/4)
Consider e.g. the following cost function and partition of Ω into
hyperplanes (in this case, intervals) of order 3:

c(s)

010** Ω001** 011** 100** 101** 110** 111**000**

Here the current population of 21 individuals samples the
hyperplanes so that e.g. ’000∗∗’ and ’010∗∗’ are sampled by
three individuals each, and ’100∗∗’ and ’101∗∗’ by two
individuals each. Hyperplane ’010∗∗’ has a rather low average
fitness in this population, whereas ’111∗∗’ has a rather high
average fitness.

I.N. & P.O. Autumn 2006

T–79.4201 Search Problems and Algorithms

Hyperplane sampling (4/4)

Then the result of e.g. roulette wheel selection on this
population might lead to elimination of some individuals and
duplication of others:

c(s)

010** Ω001** 011** 100** 101** 110** 111**000**

Then, in terms of expected values, one can show that

E[m(H,σ(p))] = m(H,p) · f (H,p).

I.N. & P.O. Autumn 2006

T–79.4201 Search Problems and Algorithms

The effect of crossover on schemata (1/2)

I Consider a schema such as

H = ∗∗11∗∗01∗1
︸ ︷︷ ︸

∆(H)=7

∗∗

and assume that it is represented in the current population
by some s ∈ H.

I If s participates in a crossover operation and the crossover
point is located between bit positions 3 and 10, then with
large probability the offspring are no longer in H (H is
disrupted).

I On the other hand, if the crossover point is elsewhere, then
one of the offspring stays in H (H is retained).

I.N. & P.O. Autumn 2006

T–79.4201 Search Problems and Algorithms

The effect of crossover on schemata (2/2)

I Generally, the probability that in 1-point crossover a
schema H = {0,1,∗}n is retained, is (ignoring the possibility
of “lucky combinations”)

Pr(retain H) ≈ 1−
∆(H)

n−1
,

where ∆(H) is the defining length of H, i.e. the distance
between the first and last fixed bit in H.

I More precisely, if H has m(H,p) representatives in
population p of total size m:

Pr(retain H) ≥ 1−
∆(H)

n−1

(

1−
m(H,p)

m

)

.

I.N. & P.O. Autumn 2006

T–79.4201 Search Problems and Algorithms

The Schema “Theorem” (1/2)

Heuristic estimate of the changes in representation of a given
schema H from one generation to the next. Proposed by J.
Holland (1975).

Denote:

m(H, t) =number of individuals in population at generation t

that sample H.

Then:

(i) Effect of selection:

m(H, t ′) ≈ m(H, t) · f (H)

I.N. & P.O. Autumn 2006

T–79.4201 Search Problems and Algorithms

(ii) Effect of recombination:

m(H, t ′′) ≈ (1−pρ)m(H, t ′)+pρ

m(H, t ′)Pr(retain H)+m ·Pr(luck)
︸ ︷︷ ︸

≥0

≥ (1−pρ)m(H, t ′)+pρm(H, t ′)

(

1−
∆(H)

n−1

(

1−
m(H, t ′)

m

))

= m(H, t ′)

(

1−pρ
∆(H)

n−1

(

1−
m(H, t ′)

m

))

I.N. & P.O. Autumn 2006

T–79.4201 Search Problems and Algorithms

(iii) Effect of mutation:

m(H, t +1) ≈ m(H, t ′′) · (1−pµ)
o(H)

I.N. & P.O. Autumn 2006

T–79.4201 Search Problems and Algorithms

The Schema “Theorem” (2/2)

In summary, then:

m(H, t +1) & m(H, t) · f (H) ·

(

1−pρ
∆(H)

n−1

(

1−
m(H, t ′)

m

))

· (1−pµ)
o(H)

The formula leads to so called “Building Block Hypothesis”:

I In a genetic search, short, above-average fitness
schemata of low order (“building blocks”) receive an
exponentially increasing representation in the population.

I.N. & P.O. Autumn 2006

T–79.4201 Search Problems and Algorithms

Criticisms

I Many of the approximations used in deriving the “Schema
Theorem” implicitly assume that the population is very
large. In particular, it is assumed that all the relevant
schemata are well sampled. This is clearly not possible in
practice, because there are 3n poss. schemata of length n.

I The result cannot be used to predict the development of
the population for much more than one generation:

1. the long-term development depends on the
coevolution of the schemata, and the “theorem”
considers only one schema in isolation;

2. an “exponential growth” cannot continue for long in a
finite population.

I Proper treatment: analyse the genetic search as a
stochastic process (Markov chain). This is unfortunately
very difficult.

I.N. & P.O. Autumn 2006

T–79.4201 Search Problems and Algorithms

10.3 Data Representations

General comments on coding:

I If the function to be optimised is not naturally defined on
binary strings, then the domain must be coded. This is a
nontrivial task for GA’s, because the representation
influences the computation.

I Real numbers can be block-coded into sequences of
integers.

I For integers, the Gray code should be considered as an
alternative to the standard binary representation. In the
Gray code the binary representation of integer k +1 differs
from that of integer k in only one bit. Thus, mutating a Gray
coded integer by one bit can only change its value by ±1.

I.N. & P.O. Autumn 2006

T–79.4201 Search Problems and Algorithms

Gray code conversion

integer standard Gray
(k) (a1a2a3) (b1b2b3)
0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

I standard → Gray conversion: bi =

{

ai , i = 1,

ai−1 ⊕ai , i > 1

I Gray → standard conversion: ai =
Li

j=1 bj

I.N. & P.O. Autumn 2006

T–79.4201 Search Problems and Algorithms

Other coding issues

I Cycles/permutations

I Trees

I Graphs

I . . .

I.N. & P.O. Autumn 2006

T–79.4201 Search Problems and Algorithms

10.4 Evolutionary Strategies

I Evolutionary methods for continuous optimisation (Bienert,
Rechenberg, Schwefel et al. 1960’s onwards). Unlike GA’s,
some serious convergence theory exists.

I Goal: maximise objective function f : R
n → R. Use

population consisting of individual points in R
n.

I Genetic operations:
I Mutation: Gaussian perturbation of point.
I Recombination: Weighted interpolation of parent points.
I Selection: Fitness computation based on f . Selection either

completely deterministic or probabilistic as in GA’s.

I Typology of deterministic selection ES’s (Schwefel):
I Population size µ. λ offspring candidates generated by

recombinations of µ parents.
I (µ+λ)-selection: best µ individuals from µ parents and

λ offspring candidates together are selected.
I (µ,λ)-selection: best µ individuals from λ offspring candidates

alone are selected; all parents are discarded.

I.N. & P.O. Autumn 2006

T–79.4201 Search Problems and Algorithms

10.5 Coevolutionary Genetic Algorithms (CGA)

I Hillis (1990), Paredis et al. (from mid-1990’s)

I Idea: coevolution of interacting populations of solutions
and tests/constraints as “hosts and parasites” or “prey and
predator”.

I Goals:
1. Evolving solutions to satisfy a large & possibly implicit

set of constraints.
2. Helping solutions escape from local minima by

adapting the “fitness landscape”.

I.N. & P.O. Autumn 2006

T–79.4201 Search Problems and Algorithms

Coevolution of sorting networks (1/4)

I Sorting networks: explicit designs for sorting a fixed
number n of elements.

I E.g. sorting network representing “bubble sort” of n = 6
elements:

I Interpretation: elements flow from left to right along lines;
each connection (“gate”) indicates comparison of
corresponding elements, so that smaller element continues
along upper line and bigger element along lower line.

I Quality measures: size = number of gates (comparisons),
depth (“parallel time”).

I.N. & P.O. Autumn 2006

T–79.4201 Search Problems and Algorithms

Coevolution of sorting networks (2/4)

I Quite a bit of work in the 1960’s (cf. Knuth Vol. 3);
size-optimal networks known for n ≤ 8; for n > 8 the optimal
design problem gets difficult.

I “Classical” challenge: n = 16. A general construction of
Batcher & Knuth (1964) yields 63 gates; this was
unexpectedly beaten by Shapiro (1969) with 62 gates, and
later by Green (1969) with 60 gates. (Best known network.)

I Hillis (1990): Genetic and coevolutionary genetic
algorithms for the n = 16 sorting network design problem:

I Each individual represents a network with between 60 and 120
gates.

I Genetic operations defined appropriately.
I Individuals not guaranteed to represent proper sorting networks;

behaviour tested on a population of test cases.
I Population sizes up to 65536 individuals, runs 5000 generations.

I.N. & P.O. Autumn 2006

T–79.4201 Search Problems and Algorithms

Coevolution of sorting networks (3/4)

I Result when population of test cases not evolved: 65-gate
sorting network.

I Coevolution:
I Fitness of networks = % of test cases sorted correctly.
I Fitness of test cases = % of networks fooled.
I Also population of test cases evolves using appropriate genetic

operations.

I.N. & P.O. Autumn 2006

T–79.4201 Search Problems and Algorithms

Coevolution of sorting networks (4/4)

Result of coevolution: a novel sorting network with 61 gates:

I.N. & P.O. Autumn 2006

